eigsol_gpu/py_notebook/EigsolGPU_test.ipynb
2024-10-12 16:29:06 +02:00

95 lines
20 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"id": "1d08e1d3-0f62-467e-8217-9eaf458afeb4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x1ab329b59a0>]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2g0lEQVR4nO3de3RU9b3//9eemWSSQAg3M+ESDF4qUpRYImn0tNpvo/TUeo6nPafYn6ew0lPW+lpyiuZ7zlLqEXpR45WyVJapnHLsz1bl6LfWtloqTcV+/YpiQaxXrPVCkCYQlVwhk+y9v3/M7AmRBGYylz2z5/lYa1bNZO/Z7wyBefX9uWzDtm1bAAAALvG5XQAAAMhvhBEAAOAqwggAAHAVYQQAALiKMAIAAFxFGAEAAK4ijAAAAFcRRgAAgKsCbhcQD8uytH//fpWWlsowDLfLAQAAcbBtWz09PZo5c6Z8vrH7HzkRRvbv36/Kykq3ywAAAOPQ1tam2bNnj/n9nAgjpaWlkiI/zKRJk1yuBgAAxKO7u1uVlZWxz/Gx5EQYcYZmJk2aRBgBACDHnGiKBRNYAQCAqwgjAADAVYQRAADgKsIIAABwFWEEAAC4ijACAABcRRgBAACuIowAAABXEUYAAICrCCMAAMBVhBEAAOAqwggAAHAVYcRFh195VQd+uF5H9rzpdikAALgmJ+7a60Vmb5/arvyfMg92qvtXv9IpW34jX2Gh22UBAJBxdEZc0vvU72Ue7JQkDe7fr77/839crggAAHcQRlzS+/QfRn79B8IIACA/EUZccvillyRJk792+YivAQDIN4QRF5iHDmmwrU2SNGXpUknSwFtvyRoYcLMsAABcQRhxwcA770iSAhUVCp5xhnxlZdLQkMLvvutuYQAAuIAw4oLBvXslSYUnnyzDMFQ4Z44kKRx9HgCAfEIYcUH4vfckKRZCnP8dJIwAAPIQYcQF4feinZGqkyVJBXMqI8/vbXOtJgAA3EIYcYHTGSlwOiOVzjDNe67VBACAWwgjGWbb9lHDNJHOSOHJzjANnREAQP4hjGSY1dsrq6dHklRYOVuSVFAZGaYZ/OtfZQ8OulYbAABuIIxk2NCBA5IkX2mpfCUlkqTA9OlSICBZloY6O90sDwCAjCOMZJgTRgLl5bHnDJ9PgZNOGvF9AADyBWEkw5ywURAqH/F8oDwaRg4ezHhNAAC4iTCSYYMd0c7ISSPDSEG0UzJIZwQAkGcIIxk22jCNNBxOGKYBAOQbwkiGxcJIKDTi+dgwzQGGaQAA+YUwkmHDnZGTRjwf64wwZwQAkGcIIxkWm8D68WGacoZpAAD5iTCSQbZtx/YR8U//WGeEMAIAyFOEkQyy+vplh8OSpMDUKSO+F5g2VZJkHjok2zQzXhsAAG4hjGSQ+dGHkiSjqCi2+6rDX1YW+Q/bltnVlenSAABwDWEkg8wPI2HE/7GuiCQZBQXyRQOJcxwAAPmAMJJBQ9GQEZgyddTvB6ZMGXEcAAD5gDCSQeaHH0mS/FNHDyPO885xAADkA8JIBjlzRj4+edXhDN84xwEAkA8IIxk09IEzZ2TaqN93hm8YpgEA5BPCSAYdbwKrJPmnOJ2RQ5kqCQAA1xFGMmgoNkwz1pyRaBihMwIAyCPjCiMbNmxQVVWVioqKVFtbqx07dhz3+EOHDmnlypWaMWOGgsGgPvGJT+iJJ54YV8G5LDaBdazVNNGQMsScEQBAHgkkesLmzZvV1NSklpYW1dbWav369VqyZIn27Nmj8o/db0WSwuGwLrroIpWXl+uRRx7RrFmz9N5772ny5MmpqD+nmIcOSZL8Y/zsTkhhNQ0AIJ8kHEbWrVunFStWqKGhQZLU0tKixx9/XJs2bdK11157zPGbNm3Shx9+qGeffVYFBQWSpKqqquSqzlFmd7ckyT+5bNTvO8+zAysAIJ8kNEwTDoe1c+dO1dfXD7+Az6f6+npt37591HN++ctfqq6uTitXrlQoFNKCBQt00003yTzO/VcGBgbU3d094pHrbNOU1dMjSfJPmjTqMc6W8KYHfl4AAOKVUBjp7OyUaZoKhUIjng+FQmpvbx/1nLfffluPPPKITNPUE088oeuvv1533HGHbrjhhjGv09zcrLKystijsrIykTKzktXTI9m2pOOEkejzdv/wDfUAAPC6tK+msSxL5eXluvfee7Vo0SItXbpU1113nVpaWsY8Z/Xq1erq6oo92tra0l1m2jndDqOkREZh4ajH+EpLjzkeAACvS2jOyPTp0+X3+9XR0THi+Y6ODlVUVIx6zowZM1RQUCC/3x977swzz1R7e7vC4bAKR/lgDgaDCgaDiZSW9cyu6HyRMboikmT4/fKVlsrq6ZHZ3a3A9OmZKg8AANck1BkpLCzUokWL1NraGnvOsiy1traqrq5u1HPOP/98vfXWW7IsK/bcm2++qRkzZowaRLzKmZR6vDAiHTVvhEmsAIA8kfAwTVNTkzZu3Kif/OQnev3113XllVeqr68vtrpm2bJlWr16dez4K6+8Uh9++KFWrVqlN998U48//rhuuukmrVy5MnU/RQ6wuqNhpGz0lTQOJ6xYDNMAAPJEwkt7ly5dqoMHD2rNmjVqb29XdXW1tmzZEpvUunfvXvl8wxmnsrJSv/3tb3X11Vfr7LPP1qxZs7Rq1Spdc801qfspcoAzB8RXdvzOiPN95owAAPJFwmFEkhobG9XY2Djq97Zt23bMc3V1dXruuefGcynPMA/F2xlxhmkIIwCA/MC9aTIktuHZpPiGacyuQ+kuCQCArEAYyRAzNmfkBBNYo7uwMmcEAJAvCCMZYnXFN0zji3VGCCMAgPxAGMkQJ1z4TrS0dxJbwgMA8gthJEPinjMSW03DPiMAgPxAGMmQ2KZnY9yx1xHbZ4RNzwAAeYIwkiFWnDuw+spY2gsAyC+EkQywBwdl9fdLimOfkTLmjAAA8gthJAOODhZH35l3NE7nxD5yRFY4nNa6AADIBoSRDIitpCktlXHU3YtH45s4UTIMScwbAQDkB8JIBli9PZIk/wm6IpJk+HxH7cJKGAEAeB9hJAPMnkgYOdEQjcM5zjkPAAAvI4xkgNXTKyk6BBMHJ4xYvb1pqwkAgGxBGMkAqy8SKvxxhhHnOIvOCAAgDxBGMiA2TJNgZ8SkMwIAyAOEkQywevskSb7SOMPIxAmR83oIIwAA7yOMZIAz3BL/MI3TGWGYBgDgfYSRDDD7nAmsia2mcToqAAB4GWEkAxJdTeMvZQIrACB/EEYyIDZME/eckchxDNMAAPIBYSQDhodp4g0j0WEaJrACAPIAYSQDhodp4pszEhumYWkvACAPEEYywAkVzpLdExneZ4RhGgCA9xFGMsDZvCyeG+VJkm+CM4GVzggAwPsII2lmm6bs/n5J8d8oj9U0AIB8QhhJs6PnffgnJDZMYw8OygqH01IXAADZgjCSZmZ0qMUIBmUUFsZ1ju+o0EJ3BADgdYSRNLMSXNYrSYbPFwskhBEAgNcRRtIs0fvSOGIrapjECgDwOMJImpm9iXdGpKMmsfYRRgAA3kYYSbPYhmdxrqRxOBukmQzTAAA8jjCSZsNzRuJbSeNwOinsNQIA8DrCSJqZsTkjiXVGhreEpzMCAPA2wkiaWb19khKfMxIbpuH+NAAAjyOMpJmzmsZXmmgYYZgGAJAfCCNp5tzsLtFhGt+EEkmS1deX8poAAMgmhJE0G+8wjbMvCWEEAOB1hJE0i216lugwjbMDK2EEAOBxhJE0M8exHbxEGAEA5I9xhZENGzaoqqpKRUVFqq2t1Y4dO8Y89r777pNhGCMeRUVF4y4418Q2PUt4zghhBACQHxIOI5s3b1ZTU5PWrl2rXbt2aeHChVqyZIkOHDgw5jmTJk3SX//619jjvffeS6roXGL1jnPTM8IIACBPJBxG1q1bpxUrVqihoUHz589XS0uLSkpKtGnTpjHPMQxDFRUVsUcoFEqq6Fzi7BOS8I3yomHE7CeMAAC8LaEwEg6HtXPnTtXX1w+/gM+n+vp6bd++fczzent7dfLJJ6uyslJ///d/r1dfffW41xkYGFB3d/eIRy6ywmFpcFBSMnNG+lNeFwAA2SShMNLZ2SnTNI/pbIRCIbW3t496zhlnnKFNmzbpscce009/+lNZlqXzzjtP+/btG/M6zc3NKisriz0qKysTKTNrHD3E4ispSehcJ4zY/f2yTTOldQEAkE3Svpqmrq5Oy5YtU3V1tS644AL9/Oc/10knnaQf/ehHY56zevVqdXV1xR5tbW3pLjMtnK6GEQzKCAQSOtcJI5Jk9dMdAQB4V0KfkNOnT5ff71dHR8eI5zs6OlRRURHXaxQUFOicc87RW2+9NeYxwWBQwWAwkdKyktMZOTpYxMsoLJQCAWloSFZfn/ylia3GAQAgVyTUGSksLNSiRYvU2toae86yLLW2tqquri6u1zBNUy+//LJmzJiRWKU5KKkwYhisqAEA5IXExg4kNTU1afny5aqpqdHixYu1fv169fX1qaGhQZK0bNkyzZo1S83NzZKk73//+/r0pz+t0047TYcOHdJtt92m9957T9/85jdT+5NkoWTCSOS8ElldXYQRAICnJRxGli5dqoMHD2rNmjVqb29XdXW1tmzZEpvUunfvXvl8ww2Xjz76SCtWrFB7e7umTJmiRYsW6dlnn9X8+fNT91NkKWeuR6KTVx3+CRM0JDojAABvSziMSFJjY6MaGxtH/d62bdtGfP3DH/5QP/zhD8dzmZyXdGekhGEaAID3cW+aNEo6jHDnXgBAHiCMpNFwGBnfME1sF1bCCADAwwgjaRQLIyXjncDKMA0AwPsII2kUm8CaZGeEMAIA8DLCSBolv7Q3GkZ6CSMAAO8ijKRRysIInREAgIcRRtJoeM7IeIdpSka8DgAAXkQYSaPhOSN0RgAAGAthJI2cEOEnjAAAMCbCSBolO2fETxgBAOQBwkgaMYEVAIATI4ykkZnkjfIIIwCAfEAYSRM7HJYGByUl3xlxQg0AAF5EGEmTo+8nk2wY0eCgrHA4FWUBAJB1CCNpYvVFuhlGMCgjEBjXaxwdYhiqAQB4FWEkTZLd8EySDL9fRnFx5PV6e1NSFwAA2YYwkiZWf3IraRxMYgUAeB1hJE2cYZrkwwhbwgMAvI0wkibJ7jHioDMCAPA6wkiapCqM+EsIIwAAbyOMpEkqJrBKdEYAAN5HGEmTZO/Y6yCMAAC8jjCSJqmeM2ISRgAAHkUYSZPhMMIwDQAAx0MYSZPhOSMM0wAAcDyEkTQZnjOSqs4IN8sDAHgTYSRNUr7PCNvBAwA8ijCSJmx6BgBAfAgjaeKEBz/bwQMAcFyEkTSJzRlJ1aZn/cwZAQB4E2EkTRimAQAgPoSRNEnZvWnojAAAPI4wkgZ2OCx7cFBS8mHEiA7zWP39sm076doAAMg2hJE0OHrr9mTnjMQmwFqW7MOHk3otAACyEWEkDezokIpRWCijoCCp1zKKi2P/zVANAMCLCCNpYKZovogkGT5frLvCJFYAgBcRRtIgVZNXHSzvBQB4GWEkDZz7yKQsjNAZAQB4GGEkDax+5469yU1edbDXCADAywgjaZC2zgjDNAAADxpXGNmwYYOqqqpUVFSk2tpa7dixI67zHnroIRmGocsuu2w8l80ZaZszQmcEAOBBCYeRzZs3q6mpSWvXrtWuXbu0cOFCLVmyRAcOHDjuee+++67+7d/+TZ/5zGfGXWyuYAIrAADxSziMrFu3TitWrFBDQ4Pmz5+vlpYWlZSUaNOmTWOeY5qmrrjiCn3ve9/TKaecklTBuSAWRlI2Z4QJrAAA70oojITDYe3cuVP19fXDL+Dzqb6+Xtu3bx/zvO9///sqLy/Xv/zLv8R1nYGBAXV3d4945JLYHXtTNmeEYRoAgHclFEY6OztlmqZCodCI50OhkNrb20c955lnntGPf/xjbdy4Me7rNDc3q6ysLPaorKxMpEzXpX6YhgmsAADvSutqmp6eHn3961/Xxo0bNX369LjPW716tbq6umKPtra2NFaZeqkfpqEzAgDwrkAiB0+fPl1+v18dHR0jnu/o6FBFRcUxx//lL3/Ru+++q0svvTT2nGVZkQsHAtqzZ49OPfXUY84LBoMKBoOJlJZVUj5MwwRWAICHJdQZKSws1KJFi9Ta2hp7zrIstba2qq6u7pjj582bp5dfflm7d++OPf7u7/5On/vc57R79+6cG36J1/AwTYo6I+zACgDwsIQ6I5LU1NSk5cuXq6amRosXL9b69evV19enhoYGSdKyZcs0a9YsNTc3q6ioSAsWLBhx/uTJkyXpmOe9JNYZKUltZ8QkjAAAPCjhMLJ06VIdPHhQa9asUXt7u6qrq7Vly5bYpNa9e/fK58vvjV3T1RmxGaYBAHhQwmFEkhobG9XY2Djq97Zt23bcc++7777xXDKn0BkBACB++d3CSJN0TWC1++iMAAC8hzCSYvbQkOwjRySlfpjGZJgGAOBBhJEUsw4fjv13qjsjGhyUFQ6n5DUBAMgWhJEUiy2/DQRkFBSk5DWP3jyN5b0AAK8hjKTY0fNFDMNIyWsagYCM6CZwFvNGAAAeQxhJsVRvBe8Y3oWVzggAwFsIIynmdC5SHkbYhRUA4FGEkRRzOhepmrzqGL5ZHsM0AABvIYykWNo6IwzTAAA8ijCSYsNbwae4MxIbpqEzAgDwFsJIig1vBU9nBACAeBBGUmx4aW+6JrDSGQEAeAthJMWGl/amawIrnREAgLcQRlIsbZ2R2DANnREAgLcQRlIsbZ0R9hkBAHgUYSTF6IwAAJAYwkiK0RkBACAxhJEUS/vSXsIIAMBjCCMplrZNzximAQB4FGEkxdLWGWGYBgDgUYSRFKMzAgBAYggjKWTbdhpX09AZAQB4E2EkhexwWDJNSenrjNhHjsiOXgMAAC8gjKTQ0V0LX3FxSl/76HDDUA0AwEsIIynkhASjuFiG35/S1zYKCqRAIHIdhmoAAB5CGEmh4Q3PUjtfRJIMw2ASKwDAkwgjKWT1OZNXUztfxMHyXgCAFxFGUiidnRHp6BU1dEYAAN5BGEmhdG145hgepqEzAgDwDsJICqVrwzMHwzQAAC8ijKRQxjojDNMAADyEMJJCdEYAAEgcYSSFMjdnhM4IAMA7CCMpNHxfmvR0RvyxYRo6IwAA7yCMpFC6l/YaDNMAADyIMJJCGeuMMEwDAPAQwkgKpX/TM4ZpAADeQxhJoXR3RmKraeiMAAA8hDCSQnRGAABI3LjCyIYNG1RVVaWioiLV1tZqx44dYx7785//XDU1NZo8ebImTJig6upq3X///eMuOJsNd0bSFEaYwAoA8KCEw8jmzZvV1NSktWvXateuXVq4cKGWLFmiAwcOjHr81KlTdd1112n79u3605/+pIaGBjU0NOi3v/1t0sVnm7RvesYEVgCAByUcRtatW6cVK1aooaFB8+fPV0tLi0pKSrRp06ZRj7/wwgv1D//wDzrzzDN16qmnatWqVTr77LP1zDPPJF18tsncdvB0RgAA3pFQGAmHw9q5c6fq6+uHX8DnU319vbZv337C823bVmtrq/bs2aPPfvazYx43MDCg7u7uEY9sZ5um7MOHJWVmAqtt22m5BgAAmZZQGOns7JRpmgqFQiOeD4VCam9vH/O8rq4uTZw4UYWFhbrkkkt011136aKLLhrz+ObmZpWVlcUelZWViZTpCisaRKT0d0Zk27HgAwBArsvIaprS0lLt3r1bL7zwgm688UY1NTVp27ZtYx6/evVqdXV1xR5tbW2ZKDMpsTvp+v0ygsG0XMMoLpYMI3o9hmoAAN4QSOTg6dOny+/3q6OjY8TzHR0dqqioGPM8n8+n0047TZJUXV2t119/Xc3NzbrwwgtHPT4YDCqYpg/0dDl6Wa8RDQypZhiGfCUlsvr6mMQKAPCMhDojhYWFWrRokVpbW2PPWZal1tZW1dXVxf06lmVpYGAgkUtnvXRveOZgEisAwGsS6oxIUlNTk5YvX66amhotXrxY69evV19fnxoaGiRJy5Yt06xZs9Tc3CwpMv+jpqZGp556qgYGBvTEE0/o/vvv1z333JPan8Rl6d7wzMEurAAAr0k4jCxdulQHDx7UmjVr1N7erurqam3ZsiU2qXXv3r3y+YYbLn19ffrWt76lffv2qbi4WPPmzdNPf/pTLV26NHU/RRaw+tO7x4iDzggAwGsSDiOS1NjYqMbGxlG/9/GJqTfccINuuOGG8VwmpzgTWDPWGSGMAAA8gnvTpEisM5LuMMIurAAAjyGMpEisM8IwDQAACSGMpEjGOiNMYAUAeAxhJEXojAAAMD6EkRTJdGfEJIwAADyCMJIimd70zGaYBgDgEYSRFMnY0t5oGKEzAgDwCsJIimRu07NI2KEzAgDwCsJIigxPYKUzAgBAIggjKZLxe9MQRgAAHkEYSZFYGJkwMa3XYQdWAIDXEEZSJBZGJmZqnxHCCADAGwgjKWDbtqzeXkkZmMDKDqwAAI8hjKSA3d8v2bYkyT8xM8M0GhyUFQ6n9VoAAGQCYSQFzN7oZFKfT0ZxcVqvdfQEWSaxAgC8gDCSAsPzRSbKMIy0Xsvw+2UUFUWvy1ANACD3EUZSwOrLzHwRBzfLAwB4CWEkBZzJq/40r6RxDE9iJYwAAHIfYSQFMrXHiIPlvQAALyGMpICZoWW9DoZpAABeQhhJAat3eAJrJrDXCADASwgjKZCp3VcddEYAAF5CGEmB4QmsdEYAAEgUYSQFWNoLAMD4EUZSIPOraUpGXBcAgFxGGEkBM+MTWKOdEYZpAAAeQBhJgUzdsddBZwQA4CWEkRTI+GoaOiMAAA8hjKRAxlfTREOPc10AAHIZYSQFTGc1TYbCiBN6rN6ejFwPAIB0IoykgHOPmIzNGZlYKml44iwAALmMMJIk2zRlR+duZKwzUhrtjPTQGQEA5D7CSJKOXtGSsc5IaWns2rZlZeSaAACkC2EkSc4kUqOgQL7CwoxcM9aBsW2W9wIAch5hJEnDy3ozM0QjSb5gUEZBQeT6DNUAAHIcYSRJZm9mV9I4nKEak+W9AIAcRxhJkuVsBZ+h+SIOnzOJlTACAMhxhJEkZXr3VYc/uryXYRoAQK4jjCTJim545s/QHXsdzrCQ2UNnBACQ28YVRjZs2KCqqioVFRWptrZWO3bsGPPYjRs36jOf+YymTJmiKVOmqL6+/rjH5xrLtTkj7MIKAPCGhMPI5s2b1dTUpLVr12rXrl1auHChlixZogMHDox6/LZt2/S1r31NTz31lLZv367KykpdfPHFev/995MuPhuYfe7MGYkN0zBnBACQ4xIOI+vWrdOKFSvU0NCg+fPnq6WlRSUlJdq0adOox//sZz/Tt771LVVXV2vevHn6z//8T1mWpdbW1qSLzwaxCaxuraZhmAYAkOMSCiPhcFg7d+5UfX398Av4fKqvr9f27dvjeo3+/n4NDg5q6tSpiVWapYaHaTK8msa5cy8TWAEAOS6QyMGdnZ0yTVOhUGjE86FQSG+88UZcr3HNNddo5syZIwLNxw0MDGhgYCD2dXd3dyJlZpQTRvwuDdOYzBkBAOS4jK6mufnmm/XQQw/p0UcfVVFR0ZjHNTc3q6ysLPaorKzMYJWJccKAr3RSRq8bm8DKMA0AIMclFEamT58uv9+vjo6OEc93dHSooqLiuOfefvvtuvnmm/Xkk0/q7LPPPu6xq1evVldXV+zR1taWSJkZZXVHwoh/UmlGr+svZQIrAMAbEgojhYWFWrRo0YjJp85k1Lq6ujHPu/XWW/WDH/xAW7ZsUU1NzQmvEwwGNWnSpBGPbGX2uNQZmch28AAAb0hozogkNTU1afny5aqpqdHixYu1fv169fX1qaGhQZK0bNkyzZo1S83NzZKkW265RWvWrNEDDzygqqoqtbe3S5ImTpyoiRlegZIOVnQ+i78005ueMYEVAOANCYeRpUuX6uDBg1qzZo3a29tVXV2tLVu2xCa17t27Vz7fcMPlnnvuUTgc1j/+4z+OeJ21a9fqu9/9bnLVZ4HYjfIy3L2JDdMQRgAAOc6wbdt2u4gT6e7uVllZmbq6urJqyMYOh/XG2QslSZ94/jn5y8oydu3Bjg69dcGFkt+vea+8LMMwMnZtAADiEe/nN/emScLR8zUyvemZ37meaco+ciSj1wYAIJUII0lwhkh8EybI8Pszem2jpESKDoeZDNUAAHIYYSQJZnRZb6bni0iSYRixbgzLewEAuYwwkgSrx1lJk9k9RhzOUA2TWAEAuYwwkoRYZ8SlMMLN8gAAXkAYSYIV3Qrerc5IbEt4hmkAADmMMJKE4Tkjbg3TOFvCM0wDAMhdhJEkmM6ckYkudUaic0YYpgEA5DLCSBKcO+a61RkZvnMvnREAQO4ijCRheDWNO7vC+mM3yyOMAAByF2EkCcOrady54Z9/cmT7eaur25XrAwCQCoSRJDjDI36X7pfjbLZmdnW5cn0AAFKBMJIEZxt2t/YZcW7MRxgBAOQywkgSTLd3YC2bHKmjm2EaAEDuIowkwXJ5B1Z/GcM0AIDcRxgZJ9s0ZfX1SXJvzsjRwzS2bbtSAwAAySKMjJPZ3S1FA4DbYUSDg7IPH3alBgAAkkUYGSfz0CFJkV1QjYICV2owioul6LUZqgEA5CrCyDg5YcQ/ebJrNRiGwYoaAEDOI4yMk/PhHxsqcYk/ttcIK2oAALmJMDJO2dAZkY6exHrI1ToAABgvwsg4WdnSGWGYBgCQ4wgj4zSUNZ2RyDCNxcZnAIAcRRgZp2wZpvE5nZFDdEYAALmJMDJOsWGayQzTAACQDMLIOGVLZ8Q/KRpGGKYBAOQowsg4OcMirk9gncxqGgBAbiOMjFPWdEYYpgEA5DjCyDjFNj1zO4xENz2zmMAKAMhRhJFxsMPh4Tv2uj5MM1nScKcGAIBcQxgZh9iQiGHI59Idex3+qVMlSVZ/v6yBAVdrAQBgPAgj4xAbopk0SYbP3bfQV1o6fOfeDz90tRYAAMaDMDIO2TJ5VYrcuTcwZYokaegDwggAIPcQRsYhWyavOpyhGvMjwggAIPcQRsZhKDocki1hJDA10hlhmAYAkIsII+NgRodD/NOnuVxJhH9KpDMy9OFHLlcCAEDiCCPjMPTBB5KkwLTpLlcSERumoTMCAMhBhJFxMGNhZKrLlUQ4dQx9+IHLlQAAkDjCyDg4nRH/1OwapjEZpgEA5CDCyDiY0Q5EIFvmjDCBFQCQw8YVRjZs2KCqqioVFRWptrZWO3bsGPPYV199VV/5yldUVVUlwzC0fv368daaNZz9PLKlMxKIzhkZ+ojOCAAg9yQcRjZv3qympiatXbtWu3bt0sKFC7VkyRIdOHBg1OP7+/t1yimn6Oabb1ZFRUXSBbvNHhqSGf3Qz57OCBNYAQC5K+Ewsm7dOq1YsUINDQ2aP3++WlpaVFJSok2bNo16/LnnnqvbbrtNl19+uYLBYNIFu808dEiybcnny6J9RqL3p+ntlRUOu1wNAACJSSiMhMNh7dy5U/X19cMv4POpvr5e27dvT1lRAwMD6u7uHvHIFrHJq1OmyPD7Xa4mwjdpkhQISKI7AgDIPQmFkc7OTpmmqVAoNOL5UCik9vb2lBXV3NyssrKy2KOysjJlr52s2LLeqdmxrFeK3J/GP2WyJMIIACD3ZOVqmtWrV6urqyv2aGtrc7ukmNjk1WnZMV/EEYhOpnU6NwAA5IpAIgdPnz5dfr9fHR0dI57v6OhI6eTUYDCYtfNLhj7olCQFsi2MlJdrYM8eDR046HYpAAAkJKHOSGFhoRYtWqTW1tbYc5ZlqbW1VXV1dSkvLhvF7kuTJbuvOgLlJ0mShg6OvqoJAIBslVBnRJKampq0fPly1dTUaPHixVq/fr36+vrU0NAgSVq2bJlmzZql5uZmSZFJr6+99lrsv99//33t3r1bEydO1GmnnZbCHyUzsu2+NI5AebkkaWiMJdYAAGSrhMPI0qVLdfDgQa1Zs0bt7e2qrq7Wli1bYpNa9+7dK59vuOGyf/9+nXPOObGvb7/9dt1+++264IILtG3btuR/ggwbHqbJrs5IQTSMDBJGAAA5JuEwIkmNjY1qbGwc9XsfDxhVVVWybXs8l8lKQx2RD/vAx1YUuW24M8KcEQBAbsnK1TTZbCi6hDnrwshJ0TkjdEYAADmGMJIAa2AgsgOrpIJsCyNOZ6SzU7ZluVwNAADxI4wkYCi6pNkoLo7seppFAtOmSYYhHXXvHAAAcgFhJAGD0SGagvJyGYbhcjUjGQUFsY3YGKoBAOQSwkgCYpNXs/Tuw7G9RggjAIAcQhhJwFCHM3m13OVKRldwEst7AQC5hzCSgMFoZyTbJq862PgMAJCLCCMJGF7Wm63DNNEw0kEYAQDkDsJIAgYPRFbTZO0wzcwZkqTB/ftdrgQAgPgRRhIw1B4JIwVZOoG1YNYsSdLg+++7XAkAAPEjjMTJHhrS0MHIVuuB8uycM1Iwe7akSBhh4zMAQK4gjMRpqKNDsiypoECB6dPcLmdUBaGQ5PPJDoc11NnpdjkAAMSFMBKn8L7I0EfBzBky/H6XqxmdUVCgQEWka8NQDQAgVxBG4jS4b58kqXB2pcuVHF/hrOhQzT7CCAAgNxBG4hTe1yZpeF5GtmISKwAg1xBG4uR0Ggpmz3K5kuMbDiP7XK4EAID4EEbiFBumqczuYZqjV9QAAJALCCNxig3TzMr2YZqZkqQwYQQAkCMII3Ewe/tkHowslS2ck92dEadzM7j/r7IHB12uBgCAEyOMxCH87ruSJP+0afKXlblbzAkEQiEZJSXS4KDCbcwbAQBkP8JIHMLvvC1JCs6d63IlJ2b4fLE6B/7ylsvVAABwYoSROITfeUeSVJgDYUSSgqedKkkK/+UvLlcCAMCJEUbiMPB2NIyccorLlcSn8NTTJEkDf3nb5UoAADgxwkgcwm9HPtQL51a5W0icgqdGQhPDNACAXEAYOQE7HNZAdJgmeNrpLlcTn+CpzjDN27JN0+VqAAA4PsLICQy8/bY0OChfaWlsD49sVzB7tozCQtkDAxrcv9/tcgAAOC7CyAkceeMNSVLRGWfIMAyXq4mPEQiosKpKkjTwZ4ZqAADZjTByAgNv7JEkBefNc7mSxBSdGan3yKuvulwJAADHRxg5gVhnZN4ZLleSmKIFZ0mSDr/yssuVAABwfISR47BNU0f+9CdJUtFZZ7tcTWKKz1ogSTryyquybdvlagAAGBth5DgG/vxnWf398k2cGNtILFcE582TAgGZH3ygob/+1e1yAAAYE2HkOA6/+KIkqfjss2X4/S5XkxhfUZGKzogMLfXv3OlyNQAAjI0wchz9O3dJkoqrq90tZJxKamslSX3PP+9yJQAAjI0wMgbbstT37LOSpJJP17pczfhMqF0sSep/fofLlQAAMDbCyBiOvPqazA8/lG/CBJXkaGekeFGN5PdrsK1N4b173S4HAIBREUbG0PuHpyVJJXWfllFY6HI14+OfOEEl554rSerZ+juXqwEAYHSEkVHYtq3ux5+QJJV+7nMuV5Oc0osvkiT1PPmky5UAADA6wsgojrz6msJvvy0jGFTpkiVul5OU0vp6yTB0+KWXNPD2O26XAwDAMQJuF+CW3iO9+s6z39G+nn2aXTpbN513kyYWTZQkffSzn0mSSj//P+SfOHHU803L1K4Du3Sw/6BOKjlJnyr/lPy++Jf/Jnt+vK9RUF6uiRdeqN6nntJHDz6oiuu+kzU/A+fnxu8Q53N+us7Phhry/fzjfRZmkmGPY3vODRs26LbbblN7e7sWLlyou+66S4sXLx7z+IcffljXX3+93n33XZ1++um65ZZb9MUvfjHu63V3d6usrExdXV2aNGlSouUe42u//ppe+eCVY55fMG2BflJ9u/7yhS9IQ0Oq2vyQihcuPOa43733O92842Z19HfEnguVhHTt4mtVf3L9Ca+f7PmJvkbvM/9Xbd/8poziYp265TcqCIVc/xk4P7d+hzif81N9fjbUkO/nH++z8MEvPXjC8+MR7+d3wmFk8+bNWrZsmVpaWlRbW6v169fr4Ycf1p49e1ReXn7M8c8++6w++9nPqrm5WV/60pf0wAMP6JZbbtGuXbu0YMGClP4w8RjrzZck2bZuerREp+3p0YTz6jRn06ZjDvnde79T07Ym2Rr5thmK3NF33YXrjvtLkOz543kN27b13v93hQ6/+KJKv/AFvXHVF9X09P9y7Wfg/Nz7HeJ8zk/l+dlQQ76ff9zPQqUukKQtjNTW1urcc8/V3XffLUmyLEuVlZX613/9V1177bXHHL906VL19fXp17/+dey5T3/606qurlZLS0tKf5gT6T3Sq7rNdaN+z2/aWv47S1/YZUuFhZp6/0YF5s6VAkWxY8yBbl3+5D/r4JHOMa9RXlyuBy/53/IPHjnme6ZtxnH+SXrwovvlN6JtNsOQCkqGXyPco8t/e0V8NQyFJduSJA2+vkcfffNbkmnpyfMn6Md/c0S2z4ivBkkqnDD8M/z6yzp45OCJr2/4paEjkmUm9x44CkpkytLlj39FBw8fOP75X3xEfl9B9KJhyRxM/vqSTH+BLv/NV098/Yvul79gguS0S81ByQzHef1yPXjR/z/69W1Tl2/9ug4ePt77f1T9/kLJH30frCFpaMCFGgoidUiSbckM98Z3/S8+HPkdHu36if4Z+gJSIBg53xrS5Y9/Ob6/Q4ZfCvclf31JMnxSQXHk/Hh+hy/5+fD5g/1S9J/qpH6HDUNmIBjf9S+6X/7gUf/eDh6O/Pkl+XdIksyCovhrKCyN/DsoSUMDkjWU/N/jRH+HC4ojf35S5O/x0JH4foe/8KD8ljX69ROtPxCM/B5Lkev/5qvx/Q7bduR9O0rvUK++9Pg/jHmuY/vS7UkP2aQljITDYZWUlOiRRx7RZZddFnt++fLlOnTokB577LFjzpkzZ46ampp01VVXxZ5bu3atfvGLX+ill14a9ToDAwMaGBh+87q7u1VZWZl0GPn277+tp9qein39ty9YmvmBrYlHpE+8b+uk7sjzGy7x6emzvTe39+Kdlr75ZOQvRvtkac9sQ0cKJdMnJZRIAQCe88S5Ph2cPPx/Uj9X+Tnd+T/uTOo14w0jCU1g7ezslGmaCoVCI54PhUJ64403Rj2nvb191OPb29vHvE5zc7O+973vJVJaXPb17Bvx9fmvWfrE/uGvu0qkH1/s03Nnei+ISNKTi3w6XCg1/M5SxSGp4hARBAAQ8ex86eDk4a8//pmZTlm5mmb16tVqamqKfe10RpI1u3S2/nzoz7Gvnz7Lpz/NtdVXZKhjsvSnuYbCBYbOD9Xpxk9/P9JiP2qY5sX9z+rq//tvJ7zODy+4W+dMPuOY51/sfCm+88+/XedMj06c/dgwTUI1TDkzNkwTO//8l3TlGf9L1W/bmvGhVGDa8h/bRdRFs+sVKj5qDlC01d/R366te397wutfNGeJQiUVkSGao2roOHxAW/edeAO2Y64frSHu61derNCEGZEvbFOKtkqTur6kjiOd2tp24j1bLppdr9CEmcPtZduSLDP56yd6vs8/3F52rQafFGuV2+ro3R/f+ZUXK1Q0PfnrS5H3IDpk1tHXrq1tCfwOR4f4krq+FPld8AUS/zskRYbYok3spP78DCPyOxzP9WfXKzRx1vAT0RqS/f2RpI6BD8ZZQ+Tfk4z/DvsDkpy/y2bkdyiu3+GLFCo6KfnrSyP+Lnf07dfWtq0nPn/Oksj5Rw2VS9K2/X/Qvr5jg8aHHxuRmV06+4TXSJWsHKb5uEzMGTnaWONkpmVqyf9eogP9B46ZNCRFJg6FSkLa8pUtoy6tSvb8bKiB83P7/GyogfPz+/xsqCHfz0/2szAR8X5+JzQeUVhYqEWLFqm1tTX2nGVZam1tVV3d6D9YXV3diOMlaevWrWMen04TiyZqwbTjr+BZMG3BmG++3+fXtYsjk3SdGcsO5+trFl8z5l/AZM/Phho4P7fPz4YaOD+/z8+GGvL9/GQ/C9Mh4ckRTU1N2rhxo37yk5/o9ddf15VXXqm+vj41NDRIkpYtW6bVq1fHjl+1apW2bNmiO+64Q2+88Ya++93v6o9//KMaGxtT91Mk4MEvPTjmH0I8S5nqT67XugvXqbxkZOsvVBKKazlbsudnQw2cn9vnZ0MNnJ/f52dDDfl+frKfhak2rk3P7r777timZ9XV1brzzjtVW1srSbrwwgtVVVWl++67L3b8ww8/rP/4j/+IbXp26623urrpmZT8rnNu75qXDTVwfm6fnw01cH5+n58NNeT7+enegTVt+4y4IR1hBAAApFda5owAAACkGmEEAAC4ijACAABcRRgBAACuIowAAABXEUYAAICrCCMAAMBVhBEAAOAqwggAAHBVwO0C4uFsEtvd3e1yJQAAIF7O5/aJNnvPiTDS09MjSaqsrHS5EgAAkKienh6VlZWN+f2cuDeNZVnav3+/SktLZRjGiU+IU3d3tyorK9XW1sY9b9KI9zlzeK8zg/c5M3ifMyOd77Nt2+rp6dHMmTPl8409MyQnOiM+n0+zZ89O2+tPmjSJX/QM4H3OHN7rzOB9zgze58xI1/t8vI6IgwmsAADAVYQRAADgqrwOI8FgUGvXrlUwGHS7FE/jfc4c3uvM4H3ODN7nzMiG9zknJrACAADvyuvOCAAAcB9hBAAAuIowAgAAXEUYAQAArsrrMLJhwwZVVVWpqKhItbW12rFjh9sleUpzc7POPfdclZaWqry8XJdddpn27Nnjdlmed/PNN8swDF111VVul+I577//vv75n/9Z06ZNU3Fxsc466yz98Y9/dLsszzFNU9dff73mzp2r4uJinXrqqfrBD35wwvub4Pj+8Ic/6NJLL9XMmTNlGIZ+8YtfjPi+bdtas2aNZsyYoeLiYtXX1+vPf/5zRmrL2zCyefNmNTU1ae3atdq1a5cWLlyoJUuW6MCBA26X5hlPP/20Vq5cqeeee05bt27V4OCgLr74YvX19bldmme98MIL+tGPfqSzzz7b7VI856OPPtL555+vgoIC/eY3v9Frr72mO+64Q1OmTHG7NM+55ZZbdM899+juu+/W66+/rltuuUW33nqr7rrrLrdLy2l9fX1auHChNmzYMOr3b731Vt15551qaWnR888/rwkTJmjJkiU6cuRI+ouz89TixYvtlStXxr42TdOeOXOm3dzc7GJV3nbgwAFbkv3000+7XYon9fT02Keffrq9detW+4ILLrBXrVrldkmecs0119h/8zd/43YZeeGSSy6xv/GNb4x47stf/rJ9xRVXuFSR90iyH3300djXlmXZFRUV9m233RZ77tChQ3YwGLQffPDBtNeTl52RcDisnTt3qr6+Pvacz+dTfX29tm/f7mJl3tbV1SVJmjp1qsuVeNPKlSt1ySWXjPi9Rur88pe/VE1Njf7pn/5J5eXlOuecc7Rx40a3y/Kk8847T62trXrzzTclSS+99JKeeeYZ/e3f/q3LlXnXO++8o/b29hH/fpSVlam2tjYjn4s5caO8VOvs7JRpmgqFQiOeD4VCeuONN1yqytssy9JVV12l888/XwsWLHC7HM956KGHtGvXLr3wwgtul+JZb7/9tu655x41NTXpO9/5jl544QV9+9vfVmFhoZYvX+52eZ5y7bXXqru7W/PmzZPf75dpmrrxxht1xRVXuF2aZ7W3t0vSqJ+LzvfSKS/DCDJv5cqVeuWVV/TMM8+4XYrntLW1adWqVdq6dauKiorcLsezLMtSTU2NbrrpJknSOeeco1deeUUtLS2EkRT77//+b/3sZz/TAw88oE9+8pPavXu3rrrqKs2cOZP32qPycphm+vTp8vv96ujoGPF8R0eHKioqXKrKuxobG/XrX/9aTz31lGbPnu12OZ6zc+dOHThwQJ/61KcUCAQUCAT09NNP684771QgEJBpmm6X6AkzZszQ/PnzRzx35plnau/evS5V5F3//u//rmuvvVaXX365zjrrLH3961/X1VdfrebmZrdL8yzns8+tz8W8DCOFhYVatGiRWltbY89ZlqXW1lbV1dW5WJm32LatxsZGPfroo/r973+vuXPnul2SJ33+85/Xyy+/rN27d8ceNTU1uuKKK7R79275/X63S/SE888//5il6W+++aZOPvlklyryrv7+fvl8Iz+e/H6/LMtyqSLvmzt3rioqKkZ8LnZ3d+v555/PyOdi3g7TNDU1afny5aqpqdHixYu1fv169fX1qaGhwe3SPGPlypV64IEH9Nhjj6m0tDQ27lhWVqbi4mKXq/OO0tLSY+bhTJgwQdOmTWN+TgpdffXVOu+883TTTTfpq1/9qnbs2KF7771X9957r9ulec6ll16qG2+8UXPmzNEnP/lJvfjii1q3bp2+8Y1vuF1aTuvt7dVbb70V+/qdd97R7t27NXXqVM2ZM0dXXXWVbrjhBp1++umaO3eurr/+es2cOVOXXXZZ+otL+3qdLHbXXXfZc+bMsQsLC+3Fixfbzz33nNsleYqkUR//9V//5XZpnsfS3vT41a9+ZS9YsMAOBoP2vHnz7Hvvvdftkjypu7vbXrVqlT1nzhy7qKjIPuWUU+zrrrvOHhgYcLu0nPbUU0+N+m/y8uXLbduOLO+9/vrr7VAoZAeDQfvzn/+8vWfPnozUZtg2W9oBAAD35OWcEQAAkD0IIwAAwFWEEQAA4CrCCAAAcBVhBAAAuIowAgAAXEUYAQAAriKMAAAAVxFGAACAqwgjAADAVYQRAADgKsIIAABw1f8DG70qd78mvu8AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"\n",
"x = np.linspace(0, 2*2.0*np.pi, 1000)\n",
"y = np.sin(x)\n",
"\n",
"\n",
"grid_bin = np.fromfile(\"../out/grid.bin\", dtype=np.float64)\n",
"plt.plot(grid_bin, np.zeros(len(grid_bin)))\n",
"grid = np.loadtxt(\"../out/grid.dat\")\n",
"plt.plot(grid, np.zeros(len(grid)), linestyle='--')\n",
"knots = np.loadtxt(\"../out/knotpoints.dat\")\n",
"plt.plot(knots, np.zeros(len(knots)), marker='o')\n",
"bspline3 = np.loadtxt(\"../out/Bspline3.dat\")\n",
"plt.plot(grid, bspline3)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8cda5f82-13ac-4b95-aed4-f999a8dbd185",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce5642b3-6387-45f7-aaaf-dfb9085b3d49",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4866585-9cb8-4eb8-a8c6-0489f831c55d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}