109 lines
31 KiB
Plaintext
109 lines
31 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "1d08e1d3-0f62-467e-8217-9eaf458afeb4",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<matplotlib.lines.Line2D at 0x1bf472eaf00>]"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABVLUlEQVR4nO3deXycZb3//9c9Syb71rRZmrTpvu+lpZRVKhUBxe2govCrR85PhSPYc45Sj1CXrxQUkB+KIigH/B5ZBAVEFi2FIoVC19B9X5I2TdI0y2RfZu7fH7MkbbNNMjN3Mnk/H4/4sJN75v7MlDbvXtfnui7DNE0TEREREYvYrC5AREREhjeFEREREbGUwoiIiIhYSmFERERELKUwIiIiIpZSGBERERFLKYyIiIiIpRRGRERExFIOqwvoC6/XS2lpKSkpKRiGYXU5IiIi0gemaVJXV0deXh42W/fjH0MijJSWllJQUGB1GSIiItIPJSUl5Ofnd/v9IRFGUlJSAN+bSU1NtbgaERER6Qu3201BQUHw53h3hkQYCUzNpKamKoyIiIgMMb21WKiBVURERCylMCIiIiKWUhgRERERSymMiIiIiKUURkRERMRSCiMiIiJiKYURERERsZTCiIiIiFhKYUREREQsFXIY+ec//8l1111HXl4ehmHw0ksv9fqc9evXM3/+fFwuFxMnTuTJJ5/sR6kiIiISi0IOIw0NDcyZM4dHHnmkT9cfPXqUa665hiuuuIKioiLuuOMOvv71r/P3v/895GJFREQk9oR8Ns3VV1/N1Vdf3efrH330UcaNG8cDDzwAwLRp09iwYQO/+MUvWL58eai3FxERkRgT8Z6RjRs3smzZsrMeW758ORs3buz2OS0tLbjd7rO+IqHqD3/g1I9+RMvhwxF5fREREeldxMNIWVkZ2dnZZz2WnZ2N2+2mqampy+esWbOGtLS04FdBQUFEanO/+ho1zzxL69GjEXl9ERER6d2gXE2zatUqamtrg18lJSURuY8tLRUAT21kRl5ERESkdyH3jIQqJyeH8vLysx4rLy8nNTWVhISELp/jcrlwuVyRLg17WjoAntraiN9LREREuhbxkZElS5awbt26sx5bu3YtS5YsifSte2VP9Y+MuBVGRERErBJyGKmvr6eoqIiioiLAt3S3qKiI4uJiwDfFctNNNwWv/8Y3vsGRI0f47ne/y759+/j1r3/Nn/70J77zne+E5x0MgD0tDdDIiIiIiJVCDiNbtmxh3rx5zJs3D4CVK1cyb9487r77bgBOnToVDCYA48aN49VXX2Xt2rXMmTOHBx54gN/97neDYlmv3d8z4lXPiIiIiGVC7hm5/PLLMU2z2+93tbvq5Zdfzvbt20O9VcTZNDIiIiJiuUG5miZaNE0jIiJiPYURwBOhTdVERESkdwojaGRERETESsM7jPiX9nrdbkyv1+JqREREhqdhHUYCDayYJt66OmuLERERGaaGdxiJi8Pw7wKrvhERERFrDOswAp36RmrUNyIiImIFhRE1sYqIiFhKYSTYxKowIiIiYgWFkXSNjIiIiFhp2IcRW+DkXp1PIyIiYolhH0bsaemARkZERESsojASGBlRz4iIiIglFEbUMyIiImIphRH/0l6v9hkRERGxxLAPI8EGVu3AKiIiYolhH0bUwCoiImIthZE0jYyIiIhYSWHE3zNiNjXhbW21uBoREZHhZ9iHEVtyMhgGAF5N1YiIiETdsA8jhs3WsdeIwoiIiEjUDfswAmDTyb0iIiKWURiho29E59OIiIhEn8IIncOIRkZERESiTWGEjvNpvDqfRkREJOoURtD5NCIiIlZSGKHTlvDqGREREYk6hRG0JbyIiIiVFEbo6BnxqGdEREQk6hRGUM+IiIiIlRRG6Fja661RGBEREYk2hRE6NbDq5F4REZGoUxihUwOr241pmtYWIyIiMswojAD2NN/ICB4P3oYGa4sREREZZhRGAFt8PIbLBYBHfSMiIiJRpTDipy3hRURErKEw4qflvSIiItZQGPGz6eReERERSyiM+NlTA2FEy3tFRESiSWHEz66REREREUsojPipgVVERMQaCiN+amAVERGxhsKIX3BLePWMiIiIRJXCiF9wS3iNjIiIiESVwoifGlhFRESsoTDiFzifxqMGVhERkahSGPELjIx4dTaNiIhIVCmM+AUaWL2NjZhtbRZXIyIiMnwojPgF9hkB8Li1okZERCRaFEb8DLsdW0oKoOW9IiIi0aQw0knHipoaawsREREZRhRGOrEHNz5TE6uIiEi0KIx0EtgS3queERERkahRGOnEFpim0fJeERGRqFEY6cSe6g8jGhkRERGJGoWRTrQlvIiISPQpjHQS2BLeqy3hRUREoqZfYeSRRx6hsLCQ+Ph4Fi9ezKZNm3q8/qGHHmLKlCkkJCRQUFDAd77zHZqbm/tVcCTZ1TMiIiISdSGHkeeee46VK1eyevVqtm3bxpw5c1i+fDkVFRVdXv/0009z5513snr1avbu3cvvf/97nnvuOb7//e8PuPhws2lpr4iISNSFHEYefPBBbrnlFlasWMH06dN59NFHSUxM5Iknnujy+vfff5+lS5fy5S9/mcLCQq666iq+9KUv9TqaYgV7ejoAnpoaS+sQEREZTkIKI62trWzdupVly5Z1vIDNxrJly9i4cWOXz7nooovYunVrMHwcOXKE1157jU9+8pPd3qelpQW3233WVzQ4MjIA8FRXR+V+IiIiAo5QLq6srMTj8ZCdnX3W49nZ2ezbt6/L53z5y1+msrKSiy++GNM0aW9v5xvf+EaP0zRr1qzhRz/6USilhYU9EEbcbsz2dgxHSB+PiIiI9EPEV9OsX7+ee+65h1//+tds27aNv/zlL7z66qv85Cc/6fY5q1atora2NvhVUlIS6TKBjmkaTFN7jYiIiERJSP/0z8rKwm63U15eftbj5eXl5OTkdPmcu+66i69+9at8/etfB2DWrFk0NDTwb//2b/z3f/83Ntv5ecjlcuFyuUIpLSwMhwNbWhre2lo8VVU4MjOjXoOIiMhwE9LISFxcHAsWLGDdunXBx7xeL+vWrWPJkiVdPqexsfG8wGG32wEwTTPUeiNOfSMiIiLRFXJTxMqVK7n55ptZuHAhixYt4qGHHqKhoYEVK1YAcNNNNzF69GjWrFkDwHXXXceDDz7IvHnzWLx4MYcOHeKuu+7iuuuuC4aSwcSekQHHjtFepTAiIiISDSGHkRtuuIHTp09z9913U1ZWxty5c3njjTeCTa3FxcVnjYT84Ac/wDAMfvCDH3Dy5ElGjhzJddddx09/+tPwvYswsvunZjQyIiIiEh2GORjnSs7hdrtJS0ujtraWVP/GZJFS+oMfUPvCnxl5x+1kfeMbEb2XiIhILOvrz2+dTXOOQM9Ie1WVxZWIiIgMDwoj57BnBKZpaqwtREREZJhQGDlHcOMzjYyIiIhEhcLIORyZWtorIiISTQoj5wiMjLTXKIyIiIhEg8LIOTqmaRRGREREokFh5ByBBlazuRlvU5PF1YiIiMQ+hZFz2JISMZxOQE2sIiIi0aAwcg7DMIK7sLZrea+IiEjEKYx0Idg3Uq2RERERkUhTGOmClveKiIhEj8JIF+zpCiMiIiLRojDSheBeI1reKyIiEnEKI12wa5pGREQkahRGuqAGVhERkehRGOmCI7i0VyMjIiIikaYw0oWOBtYaawsREREZBhRGuhDsGdEOrCIiIhGnMNIFR6BnpLYW0+OxuBoREZHYpjDSBXt6uu//eL143G5LaxEREYl1CiNdMJxObKmpgJb3ioiIRJrCSDfsGemAwoiIiEikKYx0w5HhX96rJlYREZGIUhjpRsfGZxoZERERiSSFkW4Ew4jOpxEREYkohZFuOHQ+jYiISFQojHQjeHKvzqcRERGJKIWRbtj9DazaEl5ERCSyFEa6oaW9IiIi0aEw0o3Ayb06n0ZERCSyFEa6EewZqamxthAREZEYpzDSjUAYMRsb8TY3W1yNiIhI7FIY6YYtORmcTkB9IyIiIpGkMNINwzBw+E/vVRgRERGJHIWRHtgzA+fTKIyIiIhEisJID3Q+jYiISOQpjPSgY68RLe8VERGJFIWRHjj8u7C2a2REREQkYhRGeqBpGhERkchTGOmBPXByrxpYRUREIkZhpAcOjYyIiIhEnMJID4JLe9XAKiIiEjEKIz3o6BmpsbYQERGRGKYw0gN7uj+M1NRger0WVyMiIhKbFEZ64PDvM4LHg9fttrQWERGRWKUw0gMjLs53YB7aa0RERCRSFEZ6EWhi1YoaERGRyFAY6UVwS/gqragRERGJBIWRXjhGZAHQfkZhREREJBIURnrhyPKHkcrTFlciIiISmxRGetERRiotrkRERCQ2KYz0wjHSF0Y8CiMiIiIRoTDSC3tgZOS0woiIiEgkKIz0IjhNc1o9IyIiIpGgMNILx8iRgK9nxDRNi6sRERGJPQojvXCMGAGA2dKCt77e4mpERERiT7/CyCOPPEJhYSHx8fEsXryYTZs29Xh9TU0Nt956K7m5ubhcLiZPnsxrr73Wr4KjzZaQ0LElvPpGREREwi7kMPLcc8+xcuVKVq9ezbZt25gzZw7Lly+noqKiy+tbW1v5+Mc/zrFjx3jhhRfYv38/jz/+OKNHjx5w8dGivUZEREQixxHqEx588EFuueUWVqxYAcCjjz7Kq6++yhNPPMGdd9553vVPPPEEVVVVvP/++zidTgAKCwsHVnWUObKyaD12TMt7RUREIiCkkZHW1la2bt3KsmXLOl7AZmPZsmVs3Lixy+f89a9/ZcmSJdx6661kZ2czc+ZM7rnnHjweT7f3aWlpwe12n/VlJftIbXwmIiISKSGNjFRWVuLxeMjOzj7r8ezsbPbt29flc44cOcJbb73FjTfeyGuvvcahQ4f41re+RVtbG6tXr+7yOWvWrOFHP/pRKKVFlCPLv6JmAD0jh7dXsOOtE9jsBnanDYfDhj3OxtTFuRRMzwxXqQPm9Xo4fewox3cWcXxnEe6KciYvuZgF11xPYmqa1eWJiEgMCnmaJlRer5dRo0bx2GOPYbfbWbBgASdPnuTnP/95t2Fk1apVrFy5Mvhrt9tNQUFBpEvt1kC3hG+obeGtp/bS2nz+aNChLRV8/s6FjCxIGVCNA9Xe2srbTz3GgQ/eo7m+7qzvbXrpeba//gpzP3EtC6/9jEKJiIiEVUhhJCsrC7vdTnl5+VmPl5eXk5OT0+VzcnNzcTqd2O324GPTpk2jrKyM1tZW4uLiznuOy+XC5XKFUlpEDTSMvPfCIVqbPYwck8LcjxfgafPiafNyaNtpTu6v5s3/2cMXVi3E4bT3/mIR4PV6eP1XD3Dgw/cAiEtIoGDGbMbMnEtCaipb/voXKo4dZvPLL7D9jVe48DM3sOj6L2AYhiX1iohIbAkpjMTFxbFgwQLWrVvH9ddfD/hGPtatW8dtt93W5XOWLl3K008/jdfrxWbztagcOHCA3NzcLoPIYOQYQM/IiX1VHNxcDgZcfuMURo1NDX5vwvxRPPPjD6kqbeCDl49w8ecnha3mvjJNk7effIwDH76Hze7g2tu/y4SFi7F1Co9TL7qUI9s2sfGFZyg/cogNz/4Bp8vF/E9+Our1iohI7Al5ae/KlSt5/PHHeeqpp9i7dy/f/OY3aWhoCK6uuemmm1i1alXw+m9+85tUVVVx++23c+DAAV599VXuuecebr311vC9iwjr79JeT7uXd545AMCsS0efFUQAElLi+NhXpwHw0ZslnNhXFYZqQ7Pppecp+vurAFx920omLb7orCACYBgGExYs5sZ7fsHFX7oZgLf/8DsObf4g6vWKiEjsCTmM3HDDDdx///3cfffdzJ07l6KiIt54441gU2txcTGnTp0KXl9QUMDf//53Nm/ezOzZs/n2t7/N7bff3uUy4MEqcFie50wVZg+rgM5V9GYxNeWNJKQ4Wfzp8V1eUzg7i+mX5AGw7qm9tDS2DbzgPtq1/k02PPsHAK64+RamXnRpj9cbhsGiT3+e2cs+AabJq7/8OeVHDkWjVBERiWGGOQQOXHG73aSlpVFbW0tqamrvTwgzs72dfbNmg2kyacO7wZGSnrjPNPHMDz+kvc3LshXTmbK4654agNbmdp776Wbcp5uYsjiHZSumh7P8Lh3bsZ2/rFmN6fVywac+x6U3rujzc70eDy/e9yOOfbSNpPQMvvzTB0jNGhXBakVEZCjq689vnU3TB4bDgT3Tt/y2r30jG/50kPY2L3mT0pm8KLvHa+PiHXx8xXQMA/Z/WEbx7jMDrrknXo+Hdb//NabXy7RLruAS/9RLX9nsdq69406yxhTSUFPNi/f9mJbGxghVKyIisU5hpI+CfSN92Guk/Jibox9VYrMZXPqlyX1adZIzPo2Zl+cDsPOdkwMrthd73n2bmrJTJKSksuxfv4lhC/0/A1diIp/53t0kpWdQWXyMd59+MvyFiojIsKAw0kehLO89vtN3zbg5WYzIS+7zPWZe6juv5/iuMzTUtvSjyt552tv54C/PAnDBpz5HXEJiv18rNWsU13z7vwDY8eYbVBYfC0eJIiIyzCiM9FEoK2qK9/hWxYyZOSKke2TmJpEzPg3Ta7L/g7LQi+yDPf98i9ryMhLT0pl71TUDfr2CGbOZtPgiTNPL23/4HUOgBUlERAYZhZE+Cuw10tthec0NbVQc852lM6Yf27xPW5oLwJ73SsP+g93T3nbWqIgzPj4sr3vpjV/D7nBQvLOIw1s3heU1RURk+FAY6SN7H3tGSvZWYZqQkZtEckboP+wnLhiF02WntqKJU4dq+lNqt3a9/Sbu0xUkpWcw5+NXh+1107NzWHDN9QC8839/h6c9esuTRURk6FMY6aPgYXm9jIyUBKZoZvTv8Lu4eAeTFvqWye5571QvV/dde1sbH7z4HACLrv8CTld4RkUCFn/mX0hMS6em7BTbX38lrK8tIiKxTWGkj/rSwGqaZke/yABO4p221LcJ2uGtFbQ0tff7dTrb9dY/qD9TSXJGJrOv/ERYXrOzuIRELv7STQBs/POzNNbWhP0eIiISmxRG+qgv59NUlTbQUNOC3Wkjb2J6v++VPS6VjNwk2tu8vnNtBqi9rY0PA6Min/kXHBE6E2jmZcsYNW4CrU2NvPfc/0bkHiIiEnsURvooMDLidbvxtnS97DYwKjJ6cjqOuP6fwGsYBtP9jax73yvt9+sEHN7yIfXVVSRnZDLrY8sH/HrdMWw2rrj5FgB2vv0P3KcrInYvERGJHQojfWRLTcVwOoHuV9SU7PHtnDpmemhLersy5cIcbHaDiuN1VJ6oG9Br7fnnOgCmX3YlDv97iJT8aTMZM3MOptfLtjfUOyIiIr1TGOkjwzCw9zBV09bqofRgLQAFA+gXCUhIjmPcHF/T7EAaWRtqqjlatBWAGZddOeC6+mLBtdcDsHPd37VNvIiI9EphJAQ9ragpPVCDp91LcqaLjJz+72raWWCq5uDmcrze/u05su+9dzC9XnInTiEzLz8sdfVm3JwFZI4uoLWpkZ1v/T0q9xQRkaFLYSQEPZ1PU9xpiqYvZ9H0xeipGcQlOGiub6PiuLtfr7H7Hf8UzaUfC0tNfWHYbCy45tMAbHv9r3g9nqjdW0REhh6FkRD0tLy3ePfAl/Sey263UTDN93rHd4V+km/FsSOcPn4Uu8PBlKWXhq2uvph2yRUkpKZRV3maAx++F9V7i4jI0KIwEoLuzqdxn2miprwRw2aQPzUjrPcsnOVrhi3uRxjZ88+3ABi/YBEJySlhras3zjgXc6/6JABb//aizqwREZFuKYyEoLu9RgK7ruaMS8WVGN7VKmNm+MJIxfG6kE7y9Xo87N2wHohe4+q55l51DXank7LDBzm5f48lNYiIyOCnMBKCwPk0nnN6Rkr2+sJIOFbRnCsxNY5RY32jGoGpoL44tmMbjbU1JKSmUThnQdjr6ovEtHSmX3IFAFv/9pIlNYiIyOCnMBKC7npGThf79gHJHcCuqz0ZM9M3OhJK38jud3xTNNOWXobd4YhIXX0ROEDv0JYPqC4b+AZuIiISexRGQuAY2bG0N9AD0dbiwV3ZDMCIvKSI3HesP4yU7K3C4/H2en1zfT2Ht3wA+DY6s9KI/DGMm7sATJOP/vGapbWIiMjgpDASAscIXygwW1rw1tcDUHWqAYCE1DgSUiJz5kv22FQSUpy0NrVTdri21+sPfLABT1sbWQVjGVU4PiI1hWL2x32NrHs3rMfTHp6D/0REJHYojITAlpCALTkZ6NhrpKrUF0oiNSoCYNiM4BbzfZmq2ff+PwHf3iLh2vNkIMbNXUBiWjqNtTUc3b7F6nJERGSQURgJ0bnLe8+U+kZGRuQlR/S+Y/vYN9JcX8+JvbsAmLR4aURr6iu7wxHcdG3X+jctrkZERAYbhZEQBcJI4LC8qpO+kZHM0ZEbGQHfSh3DgKrSBuqqmru97uhHWzG9XkbkjyE9OyeiNYVi5uXLADi6fTONtTXWFiMiIoOKwkiIzj0sLzAykhnBaRqA+CQnOePTgJ5HRw5v+RCACQsWRbSeUI3IH0POxMl4PR72vPu21eWIiMggojASouBheacraa5vo7G2FYDM3MiGEeh9ia+nvZ1j/hN6JyxcHPF6QhUYHdm9/k3tyCoiIkEKIyHqvNdI1SnfFE3KiHji4iO/l0dga/gT+6pobzv/8LmT+3bT0thAYlo6ORMnR7yeUE256FIczjgqS45TfuSQ1eWIiMggoTASos5h5MzJQPNq5EdFAEaMTiYpLY72Vi+lB2rO+35gimbcvIXYbPao1BSK+KRkJi5aAqiRVUREOiiMhCh4Ps3p01QF+0Uiu5ImwDAMCvxn1ZzYX33W90zT5PBWf7/IIJyiCZjhn6rZ99562ltbLa5GREQGA4WREDmyswFoLy/njH+PkUg3r3Y2enI6AKUHa856/MyJYmoryrE7nRTOmhe1ekI1ZuZsUkaMpKWhgUP+XWJFRGR4UxgJkTMQRqqrgyMjI0ZHZ2QEIG9SOuA7xbe1uWM308AUzZiZc3DGx0etnlDZbHZmXObbc2S3pmpERASFkZDZ0tIwEhJojUujpbEdw2aQkZ0YtfunjkggZUQ8ptc8a2v4w9s2ATBhweCdogmYcZlvqubYju001FT3crWIiMQ6hZEQGYaBMyeH+qQ8ANJHJWB3RvdjHO0fHTnpn6ppqKnm1MH9AIxfcEFUa+mP9JxccidOAdPkwAcbrC5HREQspjDSD46cbBr8YSRazaud5QX6Rvwrao5s3wymSfb4iaRkZkW9nv6YctElAOzfqDAiIjLcKYz0gzMnl/qkXABGRHgb+K7kTcoAoOK4m7ZWD0e2Dp0pmoDAuTkn9++hrqrS4mpERMRKCiP94MzN6TQyEv0wkpoVT3KGC6/H5MT+0xzbsR2A8YNsC/iepGaNJG/KdN9Uzcb3rC5HREQspDDSD/ZROTQERkYsmKYxDCM4VbP//a20t7SQnDmCUYXjo17LQExZEpiq+afFlYiIiJUURvqhOSUbrz0Om9lO6sgES2oY7Z+qObFnBwBjZ8/DMAxLaumvyRcuBcPg1MH9uE9XWF2OiIhYRGGkH+qMdACSmsqx2awJAIH9RtyVBwAYO2uuJXUMRHJGJgXTZgKwf+O7FlcjIiJWURjph9pW36ZiSe4SvE1NltSQNiqB+OR2zPbTgG+zs6Fo8hKtqhERGe4URvqh+nQbAEkNp2g7VWZJDYZhkJLuCyJJ6XkkpWdYUsdATV58EYZho/zIQWrKTlldjoiIWEBhpB+qTvm2gU9uKKW93JowAuBtLwbAEV9oWQ0DlZiWTsHM2YCmakREhiuFkRB52r3UlDUCkNRQatnIiGma1JT5dl1tbsrF0+a1pI5w6FhVozAiIjIcKYyEqKa8Ea/XxGG042qpoc2iqYWaslIaqisBGxh5lB9zW1JHOExatASb3c7p40epKj1hdTkiIhJlCiMhqj3ta1hNjW/DANrLyi2p4/jOjwBITB+LYTg5eWDoHjiXkJLKGP9qII2OiIgMPwojIao70wxAcorvo7NqZKR4ZxEAeZNnAVDqPzRvqJrs3x7+0OYPLK5ERESiTWEkRHVVvjCSMsK32Vm7BT0jXq+H4t2+kZEpF/lO6S07UovHM3T7RiYsXIxh2Kg4elgboImIDDMKIyEKhJHU3DQA2sqjP01TfuQQLQ0NuBKTmHTBLFyJDtpbvZw5UR/1WsIlMTWN0VOnA3Bo80aLqxERkWhSGAlRYJombexIALxuN96GhqjWcHxHEQAFM2ZjdzjIHucLRqcO10a1jnCbeMGFABxUGBERGVYURkIUGBlJG52GLdl3SF5bWXSnagL9IoEt4HMn+MJI2ZGhHkaWAHBy7x4a3UP7vYiISN8pjISgrcVDc71v99WUzHicuTm+x6MYRtqamyk9sBeAsbPnApATCCNDfGQkbVQ2IwvHY5pejmzdZHU5IiISJQojIQiMisTF23ElOnHk5ALQHsUwcmLfbjzt7aRkjSQ9Jw+A7MJUDJtBfXVLsMahapJ/dERTNSIiw4fCSAjqgytpfAflOXOyAaK6C+vxTlM0huE7MdjpspOV75syGvpTNb6+keM7ttPabM0hhCIiEl0KIyEILuvN9IURR45vmiaa59OU7NoBnH9Kb2CqZqg3sWaNKSQtOwdPWxvHPtpmdTkiIhIFCiMhCKykCYQRp3+aJlojI80N9VQcPwJAwfRZZ30vd3xs9I0YhhFsZD20SVM1IiLDgcJICAIjI8kjAiMj/mmaKO3CenLfHjBN0nNySc4ccdb3AiMjlSfqaWvxRKWeSAlM1RzZthlPe5vF1YiISKT1K4w88sgjFBYWEh8fz+LFi9m0qW8rH5599lkMw+D666/vz20td+40jTM30MAanY3PTuzdBUD+tFnnfS8lM57kDBem1xzSh+YB5E2eSmJaOi2NDZTs2WV1OSIiEmEhh5HnnnuOlStXsnr1arZt28acOXNYvnw5FRU9b+F97Ngx/vM//5NLLrmk38VaLThNE2hgzfaNjHjr6/HUR3730xN7dgJQMH1ml9/PiZGpGpvNzoSFiwFN1YiIDAchh5EHH3yQW265hRUrVjB9+nQeffRREhMTeeKJJ7p9jsfj4cYbb+RHP/oR48ePH1DBVvF4vDTUtAAdIyO2pCRsqakAtJ+K7FRNa1Mj5UcPA5DfXRiJkc3PoGOq5tCWDzC9Q/fMHRER6V1IYaS1tZWtW7eybNmyjhew2Vi2bBkbN3b/L9gf//jHjBo1in/913/t031aWlpwu91nfVmtoboF0wSbwyAxJS74uDMnsPFZZKdqTu7fi+n1kjoym9SsUV1e03knVtNrRrSeSBszcy7O+AQaqqsoP3LI6nJERCSCQgojlZWVeDwesv3TEwHZ2dmUdbPx14YNG/j973/P448/3uf7rFmzhrS0tOBXQUFBKGVGRLBfJCMew2YEH3cEd2GN7MhIxxTN+f0iASPyk3HE2WhpbKe6rDGi9USaw+mkcM48AA5v026sIiKxLKKraerq6vjqV7/K448/TlZWVp+ft2rVKmpra4NfJSUlEayyb+rO2fAswJnt32skwst7SwLNq91M0QDY7TayC33TRqcO10S0nmiYsMDXN3J4y4cWVyIiIpHkCOXirKws7HY75eVnT0mUl5eT45+u6Ozw4cMcO3aM6667LviY1z//73A42L9/PxMmTDjveS6XC5fLFUppEXfuHiMBwfNpIrjxWVtzM+WHDwLdN68G5IxP4+SBGsqO1DLjktERqykaxs1biGHYOH38KO7Kim6np0REZGgLaWQkLi6OBQsWsG7duuBjXq+XdevWsWTJkvOunzp1Kjt37qSoqCj49alPfYorrriCoqKiQTH90lfdjYwEz6eJ4MjIyQN78Xo8pIwYSerI7B6v7Whitb7PZqASU9PInTwVgMM6OE9EJGaFNDICsHLlSm6++WYWLlzIokWLeOihh2hoaGDFihUA3HTTTYwePZo1a9YQHx/PzJln/0s+PT0d4LzHB7v6ql5GRiJ4WN6JPR1TNIHzaLoTWN5bU95IU10rCZ2abYeiCQsWUbp/D0e2bmLe8mutLkdERCIg5J6RG264gfvvv5+7776buXPnUlRUxBtvvBFsai0uLuZUhJe5WqGu6uxlvQGO7MAurGWYZmRWsJzY62tezZ/We4CLT3KSkZMIDP1zaqCjb6Rk9w5am4Z2U66IiHQt5JERgNtuu43bbruty++tX7++x+c++eST/bmlpUzT7L6B1d8rYzY24q2rw+7fdyRc2lpbKDt0AOi9XyQgZ0Ia1WWNlB+tZfzckWGtJ9oyR+eTnpNLTdkpju3YzuTFS60uSUREwkxn0/RBU10bnjYvhgFJGWc31toSErD7p54icWDeqQP78bS3k5SRSXpOXp+eE5iqiYWREcMwmLBgEaBVNSIisUphpA8CK2mS0l3Y7ed/ZA7/6Eh7BPYa6TxF01u/SEAgjFQcr8PjGfq7lwamao5u34LXO7QPARQRkfMpjPTBuQfkncuZ5xuxaD15Muz3DjSv9nWKBiAjOxFXogNPm5fKksifmRNpeVOm40pKoqnOzakD+60uR0REwkxhpA8CIyPJ3YSROP8S5baSE2G9b3tbG6cO+n74dnVSb3cMm0H2uNg5p8bucDBu7kIADm/VVI2ISKxRGOmDXkdG/GGktaQ4rPctO3yA9rZWEtPSyRydH9Jzcyf4GmljIYwAHX0j2m9ERCTmKIz0QXcraQLixvhHRorDu239yb27ARg9dXqf+0UCssfHzsgIQOHcBdjsdqpOllBdVmp1OSIiEkYKI33Q3VbwAcGRkRMnwrrXyMn9ewAYPWVGyM/NLkzFMKC+qoX66paw1WSV+KRk8qf5PocjGh0REYkpCiN90Ns0Tdzo0WCzYTY24qmsDMs9vV4Ppfv3AgR/CIciLt7BiPxkIHZGR8bP9x+cpzAiIhJTFEZ60dLUTmtTO9D9NI0RFxfc/Kw1TCcMnykppqWxAWd8AiPHjuvXa+TEUBMrdPSNnNy3m+aGob9KSEREfBRGehE4kyY+yYnTZe/2OueYMQC0FoenifXEPl+/SN7kqdjs3d+3Jx2H5sVGGEnPySUzLx+vx8PxHdutLkdERMJEYaQXwX6RbkZFAsK9vPfkPn+/yNTp/X6NnPG+FTWni+tob4uNzcLGa1WNiEjMURjpRW/9IgHhXN5rmiYn/SMj/WleDUjNSiAhxYnXY3K6ODamNSbM94UR7cYqIhI7FEZ60dtKmoBwLu91ny6nvuoMNrud3EmT+/06hmEEt4Yvi4FzagDypkwjPimZ5vo6Sg/ss7ocEREJA4WRXvS2x0hAx8jIwMNIYIome9xEnK6e79ubYBg5GhthxGa3Uzh3AQBHtm22uBoREQkHhZFe1Ff7t4I/57Tec8X5G1g9Z87gqW8Y0D0Dzauj+7Gk91ydR0bCuQeKlQJ9I9pvREQkNiiM9KLR3QpAYlrPYcSekoI9PR2AthMDGx0JNq9O6X/zasCosSnYbAaN7tbglNNQN27OAgybjTMniqmtKLO6HBERGSCFkV4Ew0iqs9drg8t7BzBV0+iupeqk7/l5U6b1+3UCHHF2sgpia/Oz+OTk4Cqjw1s1VSMiMtQpjPSgtbmd9lYvAAkpcb1eH1zeO4Am1sCuq5mjC0hMTev363TWsd+IOyyvNxiM96+qObJNUzUiIkOdwkgPmup8oyKOOBtx8Y5er3cW+E7WHcjy3kC/SP7UgfeLBOTE2KF50LEba8nunbQ2NVpcjYiIDITCSA8a3W0AJKb2PioCEFfgm6YZ0MhIoF8kDM2rAYEwUnmintbm9rC9rpUyckeTnpOL19PO8R1FVpcjIiIDoDDSg6Zgv0gfw8iYgS3vbWtupvzoISA8zasBKZnxpGTGY3pNyo/GxlSNYRjB0RHtxioiMrQpjPSg0d0C9K1fBDoaWNtKSzHb2kK+36lDB/B6PCSPyCJ15KiQn9+T3Ilp/nvUhPV1rRTsG9m+GdPrtbgaERHpL4WRHjSGODLiGDkSw+UCj4e2U6dCvl/HFvDTMQwj5Of3JHdiOgCnYmQnVoDRU2fgSkyiyV3LqUMHrC5HRET6SWGkB411vtGNhD6GEcNm69TEGvpUzcn9Az8crzu5nU7w9XhiYxTB7nBQOGc+AIe3fmhxNSIi0l8KIz0I9oz0cZoGOjWxhhhGvB5P8KyVcK6kCcjMTcKV6KC91UtlSWwcmgcwYeFiAA5vURgRERmqFEZ6EOgZ6es0DXRa3hviiprTx4/S1tyEKzGJEf5AE06GzQiOjsRS38i4uQuDu7HWlGs3VhGRoUhhpAeh9oxA55GR0PYaCfSL5E2Zhs1mD+m5fRWLfSPxycnBkaQjmqoRERmSFEZ6EGrPCHRa3hviyEg4z6PpTueRkVg5NA86Ds7TEl8RkaFJYaQbbS0e2ls8QKjTNB3n0/T1B75pmhFtXg0YNTYVu8NGU10btRVNEbtPtAX2GzmxdxctjQM7MVlERKJPYaQbgSkah9OG09X3aRNn/mgwDMzGRjxnzvTpObXlZTTUVGN3OMiZMLlf9faF3WljVGEKAKUx1DeSkTuazLx8vB4PR4u2Wl2OiIiESGGkG4EwkpAaF9KeH7a4OBy5OUDfl/cGzqPJHj8JR1zfR2H6Ixb7RkCrakREhjKFkW6EuhV8Z6Eu7z0ZgfNouhPsGzlYE/F7RVOgb+Ro0RY87bFx/o6IyHChMNKNxrr+h5FQl/cG+0Ui2LwakDshDQyoPd1EQ21LxO8XLXmTpxKfkkpLQwOl/s9TRESGBoWRbnSepglVKMt7G921VJeeAHzLeiPNlehkRF4yAGUxNFVjs9kZP28hoFU1IiJDjcJIN/qz+2pAKMt7A6MiI/LHkJCcEvK9+qPj0LzYCSNAp1N8P4yppcsiIrFOYaQb/dnwLCBu7FgAWo8e7fWH4sm9/sPxIrik91yBMBJLK2oACufMx+5wUFN2iir/aJOIiAx+CiPdGFAYGTcODANPTU2vy3sDIyOROI+mO7kT0gGoLKmjtTl2mj3jEhLJnz4L0KoaEZGhRGGkG4EG1v70jNgSEnD6p2paDh3q9rq25mYqjh4GYHQUw0hKZjwpmfGYJpQfdUftvtEwceGFABza8oHFlYiISF8pjHRjID0jAK6JkwBoOdh9GDl16ABej4fkEVmkZI3s1336KzBVc/JAdVTvG2kTLvDtN3LqwD7qq6ssrkZERPpCYaQLbS0e2vqxFXxnrokTgZ5HRk7u9/eLTJke0sZq4TB6SgYAJ/bFVhhJycwiZ6JvF9vDGh0RERkSFEa6EOgXsTttOOP7d4Jun8LIvsifR9OdgmmZAFQcr6OlKXb6RgAmXrAEgIObNlpciYiI9IXCSBeaOm141t8RC9ckfxg5eLDLFTVej4fSA/uA6Gx2dq6UzHjSRiZgek1KY2yqZtIiXxgp2b2D5oZ6i6sREZHeKIx0YSAraQLixo0Dux2v2017xenzvn/6+FHampuIS0gka8zYft9nIPL9oyOxNlWTmZdP5ugC38F527dYXY6IiPRCYaQLwd1X+9m8CmBzuYgb49uJteXQwfO+f6LT/iI2W/+mggYq3983UhJjYQRg4gX+VTWaqhERGfQURrrQNIBzaToL9I20dtE3cnJfIIxEb0nvufKnZIAB1acaYuqcGoBJ/r6Ro0VbaWuNrfcmIhJrFEa60FgbpjAyqesmVtM0ObF3FwD502YO6B4DEZ/sZGSBbwv6WJuqyZ4wieQRWbS1NFO88yOryxERkR4ojHQhuOHZAKZpoNOKmgNnT9NUnTxBU50bhzOOnAkTB3SPgcqfGljiG1t7chiG0bEB2mZN1YiIDGYKI11oCkMDK4Brkn/js8OHz1pRExgVyZ08FbvDOaB7DFRHGKmOucPlAqtqDm/5EK/HY3E1IiLSHYWRLoRjNQ34D8xzOPDW19NeVhZ8fDD0iwTkTkzH5jCor26htqLJ6nLCKn/aTOKTkmmqcwfPABIRkcFHYaQLjWFqYDXi4ogr9C3bDfSNmKZJSbBfxPow4oyzkzvetzV8rE3V2Ox2xi9YBGhVjYjIYKYwco62Vg9tzb4h/f4ckneuc8+ocZ+uoP5MJTa7nbxJUwf8+uGQP9W330hMLvH1T9Uc3Lwx5qahRERihcLIOQL9InaHjbh+bgXf2bnbwgf6RbLHT8QZHz/g1w+HQN/Iyf3VeL2x9QO7cPY8HC4XdZWnKT98/n4vIiJiPYWRc3TuFwnH4XXBJtaDvh+EgX4RK5f0nmvU2BTi4u20NLZTWVJndTlh5XTFM2G+b6pm38Z3La5GRES6ojByjuDuq2GYooFOe40cPozp9XbaedX6fpEAm91G3uTYPMUXYMpFlwBwYOMGTK/X4mpERORcCiPnCNdKmoC4MWMwnE7MxkZq9u2j+tRJMAxLDsfrSazuNwJQOHcBzvgE6s6cpvTgfqvLERGRcyiMnCO4FXxKePb/MBwO36F5QLF/mmDkmELik5PD8vrhUuBvYi09WEtbS2ztyeGMczFx4WIA9m/8p8XViIjIufoVRh555BEKCwuJj49n8eLFbNq0qdtrH3/8cS655BIyMjLIyMhg2bJlPV5vtXBP00BHE+vJvYOvXyQgIzeR1Kx4PO1eSvbG3uhIcKrmg/fwemMrbImIDHUhh5HnnnuOlStXsnr1arZt28acOXNYvnw5FRUVXV6/fv16vvSlL/H222+zceNGCgoKuOqqqzh58uSAi4+Ejt1XXWF7TddkXxPrqbJSYHD1iwQYhkHh7CwAju2otLia8Bs7ez6uxCQaqqs4uU8boImIDCYhh5EHH3yQW265hRUrVjB9+nQeffRREhMTeeKJJ7q8/o9//CPf+ta3mDt3LlOnTuV3v/sdXq+XdevWDbj4SAjXhmeduSZOpM1mo6a1GRgcm511ZVwgjOysjLklvg6nk4n+k3z3v69VNSIig0lIYaS1tZWtW7eybNmyjhew2Vi2bBkbN/Zth8vGxkba2trIzMzs9pqWlhbcbvdZX9HScWJv+M6McU2cSHVSPBiQkTuapPSMsL12OOVOSicuwUFTXRvlR6P3mUdLcKrmw/d0Vo2IyCASUhiprKzE4/GQnZ191uPZ2dmUdTp7pSff+973yMvLOyvQnGvNmjWkpaUFvwoKCkIpc0DCdWJvZ86CAqrSfA2ruQWFYXvdcLPbbYydOQKAYztOW1xN+I2ZOYf4lFSa3LWU7N5pdTkiIuIX1dU09957L88++ywvvvgi8T3sPrpq1Spqa2uDXyUlJVGpr73TVvDhnKYx7HaqM1IBGJU4uFbRnCswVXP0o9jrG7E7HMGTfLWqRkRk8AgpjGRlZWG32ykvLz/r8fLycnJycnp87v3338+9997LP/7xD2bPnt3jtS6Xi9TU1LO+oqGx81bwCY6wvW5LYwM1Nl8PRmZdY9heNxLGzMjEZjOoLmukpnxw19ofU5b4pmoObtqIp73d4mpERARCDCNxcXEsWLDgrObTQDPqkiVLun3ez372M37yk5/wxhtvsHDhwv5XG2HBKZpUZ1i2gg84sXc3JpDY0op934GwvW4kuBKd5E1OB3yNrLGmYPosEtPSaa6vo3hnkdXliIgI/ZimWblyJY8//jhPPfUUe/fu5Zvf/CYNDQ2sWLECgJtuuolVq1YFr7/vvvu46667eOKJJygsLKSsrIyysjLq6+vD9y7CpLmuDYCE5PBN0QCU7P4IgBH1TTTt3DnotyQfNyd2p2psdjuTFi8FYO9771hcjYiIQD/CyA033MD999/P3Xffzdy5cykqKuKNN94INrUWFxdz6tSp4PW/+c1vaG1t5fOf/zy5ubnBr/vvvz987yJMmht9YSQ+OXwraQCK/c2SWS0evHV1tB47FtbXD7fCWb4wcupwLc31bRZXE34zLv0YAAc/fJ+WxgaLqxERkX41Rtx2223cdtttXX5v/fr1Z/362CD/wdtZS4OvhyA+MXz9Ik11bk4fOwJAXkEh5ulqmj7agWv8+LDdI9xSsxIYMTqZMyfrOb77DFMW99wPNNTkTJxM5ugCqk6WsP/9d5m97BNWlyQiMqzpbJpOmht8owCupPCNjJTs8Y2KjMgfQ8acuQA07fgobK8fKR1TNbG3xNcwDGZe7ltavmv9WourERERhZFOAmEkPoxhpHjXDsC3x0XCHN8qouaPdoTt9SMlsDV88e4qPG2Du8elP6Zf+jEMm41TB/dz5kR0lo6LiEjXFEY6aYlAGCnZ7QseBTNnk+Bf0tx84ADe5uaw3SMSRo1JITEtjrYWDycOVFtdTtglpWcwbp5vZdfud960uBoRkeFNYaST5kZfz4grKTw9I/XVVVSdLAHDoGDaLBy5udhHZkF7O817BvdhbYbNYNyckQAc3tr1IYhDXWCqZs8/39L28CIiFlIY6SQ4MpIYnpGRwKjIqMLxxCcnYxgGCbPnANA0BKZqJl8wCoDD2ypob4u9H9bj519AQkoqDTXVHC3aanU5IiLDlsJIJ+FuYO3cLxIQmKoZCk2suRPSSc500drs4diOM1aXE3Z2h5Ppl14BwO71mqoREbGKwkgnzYGlvWGapinZ4w8jMzq2vx9KTayGzWDyBb5lvQc29e0gxKFmxuUfB+Dw1k00umstrkZEZHhSGPHzery0NgXCyMBHRmoryqktL8Ow2Rg9dXrw8fiZM8EwaCstpb1y8O9wOnmxbzO747vOBEeOYsnIMYVkj5+I19PO3nfXW12OiMiwpDDi19LUcWiaKwybngX6RXImTiYuITH4uD05GdfECQA07Rj8oyMj8pLJKkjG6zE5FKONrDP8jay716/FNE2LqxERGX4URvwC257Hxdux2Qf+sRTvDkzRzDnve/GBvpEhMFUDxPxUzbSll2N3OjldfIzSA/usLkdEZNhRGPFr8S/rDce5NKZpUrLL16A6Zubs874fXFEzBJpYASZdkA0GnDpUi7uyyepywi4+OZlpF18OwLbXXra2GBGRYUhhxC+4kiYMy3qrT52kvroKu8NB7uSp530/2MS6c9egP8EXIDnDxejJGQAc2FxucTWRMf+TnwZ8h+e5T8fmdJSIyGClMOLXsfvqwPtFjvn3rBg9dTrOONd533dNnIiRkIC3vp7WI0cGfL9omOJvZD3wYVlM9lWMHFPImJlzME0v2//+N6vLEREZVhRG/ALLesOxx0hgA63CuQu7/L7hcJAwYwYwdPpGxs8bhd1po7qskcqSeqvLiYjA6MjOt/5Oa3PsTUeJiAxWCiN+zWHafbWtpTl4Uu+4uQu6vS5+TmDzs6ERRlwJDgpn+Q7P2x+jjazj5y0kPSeXloYGdr+zzupyRESGDYURv+A0zQAbWEv27MTT1kbKiJGMyB/T7XUd28IPjSZW6JiqObipHI9n8Pe6hMqw2Zh/9acA2P76X4dEP4+ISCxQGPELHpI3wD1Gjm73TdGMm7sAwzC6vS5xwXwAWvbtGxKbnwGMmTGChNQ4Gt2tHNl+2upyImLG5ctwJSZRfapU59WIiESJwohfRwNr/0dGTNPkaNEWgODx9N1xZGXhmj4NgIb33uv3PaPJ7rAx45I8AHauP2FxNZERF5/ArCuXA7BVy3xFRKJCYcQvHIfkVZ8qpba8DJvd0eX+IudKvuRSAOrf3dDve0bbzEtGY7MZnDpUy+mSOqvLiYh5y6/FMGwU7yyisviY1eWIiMQ8hRG/5jCMjBzzj4rkT5t+1hbw3Um+5GIAGjZswPR4+n3faEpKdzFh/kgAdr4dm6MjqSNHMWnREgA2//XPFlcjIhL7FEb8gjuwDmCfkd6W9J4rYe5cbCkpeGpqaN69u9/3jbZZl+cDvg3QAtvox5oLPv15APZueIczJ0ssrkZEJLYpjABerxkMI/3dgbWvS3o7MxwOkpb4/gVe/+67/bqvFXImpJFVkIynzcue90qtLiciciZMYsLCCzFNLxuff9rqckREYprCCNDa2OnE3n6OjPR1Se+5kgJTNf8cOmHEMAxmX+EbHdn5zgm83tjbkRVg6b/cCMD+je9yWr0jIiIRozBCR7+IM96OvZ8n9vZ1Se+5ki+5BICmnTtpr67u172tMGlhNvFJTuqrWji2Y2gsTQ7VyLHjmHyhLyy+/6c/WlyNiEjsUhhh4M2roSzpPZczJwfXpEng9dLw/vv9ur8VHHF2pl/sW+a7I0YbWQEu+sKXwTA4tHkj5UcOWV2OiEhMUhhh4GEk1CW950q61Dc60jCElvgCzLxsNIYBJ/dXc6Y0Ns+rGZE/hmlLLwPgvT/9r8XViIjEJoUR6NS82r9+kVCX9J4rMFVTv2HDkNqCPCUznnFzfct8t/+92OJqImfJ57+EYbNxdPsWSg/stbocEZGYozDCwEdGjmz3hZG+Luk9V8L8+RiJiXgqK2nZt69fr2GVBZ8YC/gOz6s61WBxNZGRkTuaGZddCcB76h0REQk7hREGFkYa3bUU7/Iddjdx4eJ+3d8WF0fShRcCQ2s3VoBRY1MZNycLTNj8t6NWlxMxF372i9jsDop3FnF46yaryxERiSkKI0BLg3+aph/Leg9t2ojp9TKqcAIZuaP7XUNwN9YhtN9IwOJPjQcDDm2toPJEbG4RnzYqm/mf9J3o+/aTv6WttcXiikREYofCCAMbGdm/0RceJi+5eEA1JPn7Rhq3b8dTN7R+oI8YnczEBaMA2PRK7I6OLPn8l0gekUVtRTmbXnre6nJERGKGwgjQ0ug/JC/E3Vcba2so2e3bdXXKkksGVENcfj5x48aBx0PDhqE1VQOw6NpxGAYc/aiS8mNuq8uJiLj4BK646esAbH75BapPnbS4IhGR2KAwAjQ39O9cmoOb3sc0vWSPn0R6ds6A60hZtgyAmpdeGvBrRVtGThKTF/s+g02vHLG4msiZtHgphXPm42lv563/+S2mGZu7z4qIRJPCCP2fptn/vm+KZsoAp2gC0j/3WcC330hbWVlYXjOaLrimEJvNoHh3FacO1VhdTkQYhsHHVvy/2B0Ojn20jYObhs5GdSIig5XCCNDiDyOuEMJIQ001JXt3AQS3DB+ouMJCEi+4ALxeal98MSyvGU1pIxOZujQXgA9ePhKzowYZuaODp/q+/dTjtDY3WVyRiMjQNuzDiNdr0tIUmKbpexg58OF7YJrkTJxM2qjssNWT/vnPAVDz578MqQ3QAhZeXYjdYaP0YA0HN5dbXU7ELLr+C6SNyqb+TCUbnv2D1eWIiAxpwz6MtDa1g/8f8KHswNoxRTOwxtVzpVx1FbaUFNpOnKDxww/D+trRkJIZz8JPFgKw4fmDNNe3WVtQhDjjXFz5r98CYPvrr3Bk22aLKxIRGbqGfRgJ/LB0uuzYHX37OOqqKjm5fw8Aky9cGtZ6bAkJpF57DQA1L/w5rK8dLfOuGkNmXhJNdW289+eDVpcTMePmLmD+1b69R9749S+orzpjcUUiIkOTwkhj6M2rBz98H0yT3MlTSc0aFfaa0j/n60eoW7sWT01N2F8/0uwOG1d8ZSoYsG9jGSf2VVldUsRccuMKRhaOp6nOzeuPPIDX67G6JBGRIWfYh5H+7L66f6NvH5ApF4Z3iiYgfsZ0XNOmYba2UvvK3yJyj0jLGZ/GzEt9O9Ku/+N+2ltj84e0w+nk2tu/i9MVT/GuHWx+eWiOZomIWGnYh5FQl/W6K09TGpiiWRLeKZoAwzBI/5y/kfWFF4bsqpQl108gKd1F7ekmNr92zOpyIiYzL5+Pfe0bALz3p//Vyb4iIiEa9mEk1N1Xd7z5OgD502eSkpkVsbrSrrsWIy6Olv37ad61O2L3iaS4BAeXfnEyAEX/KI7Zc2sAZlx2JVOXXobp9fLqwz+noaba6pJERIaMYR9GAg2s8cm9h5G21hY+evMNAOZ94rqI1mVPSyPlqqsA3+jIUDV+7kjGzx2J12vyxm93BUeiYo1hGCz7+q2kZ+fiPl3Bi/f9WPuPiIj0kcJIo3+PkT4s69377nqa69ykjhzFxIUXRrgySP+8r5G19uWXaTt1KuL3i5TLvzKFlMx4ak83sfaJPXi9Q3PaqTeuxEQ+c+cPSUhJpfzIQV75xb142tutLktEZNAb9mGkr7uvmqbJ9tf/CsC85ddis9sjXlvi4kUkLFyA2dxMxS9+EfH7RUpCchxXf2MWdqeN4t1nYvrsmsy80Xzme6txuFwcK9rK2sd+OWR7fkREomXYh5G+HpJXvOsjKkuO43TFM/NjV0WjNAzDIPvOVWAYuP/6Ck07dkTlvpEwckyKb7kvsPX14xzeXmFxRZGTO2kK191xJ4bNxu531vHec/9rdUkiIoPasA8jfW1g3eYfFZlx+ZXEJyVHvK6AhJkzSPv0pwEoX3PvkP5X9pTFOcy5sgCAN5/cy5nSeosripzx8y9g2ddvBeDDF59j8yt/sbgiEZHBa9iHkb40sFaXlQa3+573iU9Fpa7ORn7nOxgJCTRt307d669H/f7hdNFnJzB6SgbtLR5e+/UO6qqarS4pYmZfuZyL/uVGAP75v0+w/g+/G5LnDYmIRJrCSGAH1h5GRra/8QqYJuPmLSQzb3S0SgtyZo9ixC1fB6Di/gfwtrREvYZwsdltLP/6DFKz4nFXNvOX+7dSe7rR6rIi5sLPfpFLb1wBwNZXX+K1Xz1Ae1tsrigSEemvYR1GTK9JS2PPO7C2NDaw6+03AZj/yU9HrbZzjVixAkdODm2lpVQ9+ZRldYRDQkocn/mP+aRnJ1Jf1cJf7t9G1akGq8uKCMMwuOBTn+Pq2/4Dm93Ovvfe4cV7V9PSGLsBTEQkVMM6jLR0OrG3ux1Yd739Jm3NTYzIH8PYWXOjV9w5bAkJjPqPlQCc+e1vaSsf2g2gyRnxfOY/5pOZl0RjbSsvPbgtpjdFm37JFXzme6txxidQvGsHz67+LmdOFFtdlojIoDCsw0hgA67uTuxtqKnmgxefA2D+1Z/CMIyo1neu1GuuIX7ObLyNjZz41rfw1A/t0YTE1Dg+s3I+I8ek0FTXxksPbo/pQ/UK58znhtVrSExLp7L4GP/3ztvZ+urL6iMRkWFvWIeRng7JM02TtY8/QnOdm5GF45lx+ZXRLu88hs3G6Pvuw56ZSfPu3Zz89r9jtrZaXdaAxCc7+fQdc8kZn0pLYzsv/39FvP/nQ3jaY/MHdPb4iXz1vocpnLsAT1sb6//wOC/89Ae4K09bXZqIiGWGdRgJNq92MUWz9923ObzlA2x2B1ffuhK7o29n10RaXGEhBb/9LUZiIg3vb6R01feH/L+sXYlOPnX7PKZfnAcmbF9bzAv3bYnZPpLkjEw+e+cPWfb1b+FwuSjetYM//NdtbH/jFTW3isiwNKzDSHD31XNW0tRVVfLW//wWgIu+8GVGjimMdmk9Spg1k/yHHwaHA/err1J+79DefwR8U2VXfGUqV39jFvFJTipL6nn+ns18tK4ET9vQDltdMQyDOR//JDfd9zC5E6fQ0tjAW//zW56449/Y+dY/8Ho8VpcoIhI1hjkEfoq53W7S0tKora0lNTU1LK9Z31zPz556nOztc6jLP8lt//kZkuOTMU2Tv9z7Q44VbSVn4mS+9OOfR2Xr9/6ofeUVSv/ruwCM+Mb/y8hbb8Vw9n0Ex+P1sK1iG6cbTzMycSTzR83HbrP+vTbUtrDuqb2U7PH1jySlu5i/fCzTL87F4QxffYPl/Xs9Hnas+zsf/uVZ6qt97zkjN4/Fn7mByRcuxemKj9i9B8tnYBW9/+H9/kGfQX1zPd9///ucqDtBfko+91x0D8nx4dvYs68/v/sVRh555BF+/vOfU1ZWxpw5c/jlL3/JokWLur3++eef56677uLYsWNMmjSJ++67j09+8pN9vl+4w8iX/vYldp3ZxYKST3DBiavZnf0e747/EzNHzGRVwv/D2sd+id3p5Kv3PsyI/IIB3y+Szjz5JBX33geAa9JEsu+6i6Qefi8C3jz+JvduupfyxvLgY9mJ2dy56E6WjV0WsXr7yvSa7N5QypbXjtFQ49tXJTEtjvlXjWXKhTndrn7qq8H4/ttaW9ix9nU+fOl5mty1AMQlJDD5wouZfunHyJ86A8MWvsHMwfgZRJPe//B+/6DPIPCz8FwzR8zkmWufCcs9IhZGnnvuOW666SYeffRRFi9ezEMPPcTzzz/P/v37GTVq1HnXv//++1x66aWsWbOGa6+9lqeffpr77ruPbdu2MXPmzLC+mb7o/OEvPfpZZpVdxrbRa9mc/zcmnkjmwn0jsLfDZV/5Gguv++yA7hUtNS++RMXPfoanuhqA1OuuY9R//SfOLn4/wPcHcOX6lZic/Vtv4Fst9ODlDw6aP4ieNi973y9l6xvHqa/2hRKbzWD0lHTGzxvFuDlZJKW5QnrNwf7+W5ub2P76K+xY93fcpzv+kkwdOYpx8y4gf9oM8qfNJDkjs9/3GOyfQaTp/Q/v9w/6DLoLIgHhCiQRCyOLFy/mggsu4Fe/+hUAXq+XgoIC/v3f/50777zzvOtvuOEGGhoa+Nvf/hZ87MILL2Tu3Lk8+uijYX0zvalvrmfJc0uCv/7Ywa8w6fRC9qf9kczTJ0lt9P1re+SkiVy98rvYHE5wdBoib+2hodKwgTOhf9e2NUJ3vw2GAc7EXq/11rppeOwJmv7yVzBNjIQEnAvnEzd/Ds75c3FMmoBhs+ExPXzxH1/hdHNlt+WNShjJMx//v9iNTkOVcUkd/7+9Gbw99DSEcq0z0fceAdpbwNve5WWedi9Hi5o4uKGC2rKmjm8YkJ4TT0aei/SceNJz40nLceFKT8YIDLV6WsHj6w/q9/sPcMRDF6/bpbOubfNd3+21LrA5zrrW9HopP3SIwx+8z7GtW2hrPnvr/NTsHEZOmEjqyCxSR2X7v0bhjO/036w9Duz+USRvO7S39PEzGMUzH/9D158B+F7THud/XY/v97k7na81vdDWFJ5rbQ7f5wa+PxNtPWwk1+laj7edL7762d7f/zV/9r3/nv4s2+xD5u+IwLUeh4svvvo5Tjd1v1dR8M+Aq9Pft21Nvt+T7lj8d0Qo13pMD19c+1VON3W/iu2svwecCb7fEwjxz31k/47o07X+P/ed1bfXc+2rn+n++X4bb9g44CmbiISR1tZWEhMTeeGFF7j++uuDj998883U1NTw8ssvn/ecMWPGsHLlSu64447gY6tXr+all17io48+6vI+LS0ttHTa8tztdlNQUDDgMPLtt77N2yVv+35hwqe3XU9mZQmmx/eXUlOchx0Tajkwpg7PEJ0yHH/K5F//7mHSqbMfr4+H0kxoijNockGTC5qdYJ6zdcqgbyACDGMkdscc7I452OzjurzGNNvBrMc06zDNeqAJ0/QAHqAdTA8d73bwv2vT9GJ63JieekxvPXh7+CGNDQw7GA4M7L7/j+H/S9rm+/9B1u6dIyKDx/vTjrC/oGOvpysKruDhjz08oNfsaxjpeg/0blRWVuLxeMjOzj7r8ezsbPbt29flc8rKyrq8vqysrNv7rFmzhh/96EehlNYnJ+pOBP+/zYS0yv2Ynkba7bBjQjV7Cutodwz+H0w9OZJr8IOb7Yw/BdOLTWYUm0wtMUluhsmlMBR+8PauAlgLrKUlLg13aiF1yaNpSBpNXfJomhNGYhgOMNIxSLe41sgwvc1420sxPRV4vTWYnmpMbw2YTYDX9y9Ysy0mfrdFJDpGulPYT0cY6fwzM9JCCiPRsmrVKlauXBn8dWBkZKDyU/I5WHMQAK8NDo+JI6MuiQ+mHqcy1R28bmn2En564Y+H5BDs2df6hlXNdg/tBw/hPX2ao2X7+MuuZ0hohfjWc+dKO3w8fxnZCZ16TuydGka9np6Ha6N4bSKQEXywETiIx3uYViOeFo+TVo+T1nYb7V4bXtPA3drIwdqjGIHRgrN0/HpcSiFJjiTOY9g6LjPN7n8vQr7W6Bhe7vO18WAWgJkf/JbH20q7pxWPt+PLa7b7RlZMD17TQ6unhZqWGnoLpmlxacTZ4rqpIfg/HTV3W+/gurbV20ptS0331/qludJ9738wvDfM7n+7Qry21dvWt/cfl0acvXM/Vg+vCx3//Q6Ba1u9rdS21vbwQj7BPwOD4r0F/2fA19a21dLaxTTPqfQjZ/06PyX/vGsiJaQwkpWVhd1up7y8/KzHy8vLycnJ6fI5OTk5IV0P4HK5cLlCa0rsi3suuuesnpH3pnU9TXT/5Q92PU+WmNL3m4VyLVG4Nst32nC218PqP6+norHivMYt8DVvZSdmc+fnfhGTy9s8Xg/L/7y81/f/xufuicn3D6F8Br+Pyc9A7394v3/QZ3Bu/2R37rnonihU4xPSOsG4uDgWLFjAunXrgo95vV7WrVvHkiVdv7ElS5acdT3A2rVru70+kpLjk5k5oucVPDNHzAzrGuvBxm6zc+ciX6Oxcda/pjp+/b1F34vJP4Cg9w/6DPT+h/f7B30Gg/FnYcibFqxcuZLHH3+cp556ir179/LNb36ThoYGVqxYAcBNN93EqlWrgtfffvvtvPHGGzzwwAPs27ePH/7wh2zZsoXbbrstfO8iBM9c+0y3vwnhXFs9mC0bu4wHL3+QUYlnL/3NTsyO+eVsoPcP+gz0/of3+wd9BoPtZ2G/Nj371a9+Fdz0bO7cuTz88MMsXrwYgMsvv5zCwkKefPLJ4PXPP/88P/jBD4Kbnv3sZz+zdNMziPyuc0PBcN95cLi/f9BnoPc/vN8/6DMY0juwRlskwoiIiIhEVl9/fg/rg/JERETEegojIiIiYimFEREREbGUwoiIiIhYSmFERERELKUwIiIiIpZSGBERERFLKYyIiIiIpRRGRERExFIhndprlcAmsW632+JKREREpK8CP7d72+x9SISRuro6AAoKCiyuREREREJVV1dHWlpat98fEmfTeL1eSktLSUlJwTCM3p/QR263m4KCAkpKSnTmTQTpc44efdbRoc85OvQ5R0ckP2fTNKmrqyMvLw+brfvOkCExMmKz2cjPz4/Y66empuo/9CjQ5xw9+qyjQ59zdOhzjo5Ifc49jYgEqIFVRERELKUwIiIiIpYa1mHE5XKxevVqXC6X1aXENH3O0aPPOjr0OUeHPufoGAyf85BoYBUREZHYNaxHRkRERMR6CiMiIiJiKYURERERsZTCiIiIiFhqWIeRRx55hMLCQuLj41m8eDGbNm2yuqSYsmbNGi644AJSUlIYNWoU119/Pfv377e6rJh37733YhgGd9xxh9WlxJyTJ0/yla98hREjRpCQkMCsWbPYsmWL1WXFHI/Hw1133cW4ceNISEhgwoQJ/OQnP+n1fBPp2T//+U+uu+468vLyMAyDl1566azvm6bJ3XffTW5uLgkJCSxbtoyDBw9GpbZhG0aee+45Vq5cyerVq9m2bRtz5sxh+fLlVFRUWF1azHjnnXe49dZb+eCDD1i7di1tbW1cddVVNDQ0WF1azNq8eTO//e1vmT17ttWlxJzq6mqWLl2K0+nk9ddfZ8+ePTzwwANkZGRYXVrMue+++/jNb37Dr371K/bu3ct9993Hz372M375y19aXdqQ1tDQwJw5c3jkkUe6/P7PfvYzHn74YR599FE+/PBDkpKSWL58Oc3NzZEvzhymFi1aZN56663BX3s8HjMvL89cs2aNhVXFtoqKChMw33nnHatLiUl1dXXmpEmTzLVr15qXXXaZefvtt1tdUkz53ve+Z1588cVWlzEsXHPNNebXvva1sx777Gc/a954440WVRR7APPFF18M/trr9Zo5OTnmz3/+8+BjNTU1psvlMp955pmI1zMsR0ZaW1vZunUry5YtCz5ms9lYtmwZGzdutLCy2FZbWwtAZmamxZXEpltvvZVrrrnmrP+uJXz++te/snDhQr7whS8watQo5s2bx+OPP251WTHpoosuYt26dRw4cACAjz76iA0bNnD11VdbXFnsOnr0KGVlZWf9/ZGWlsbixYuj8nNxSByUF26VlZV4PB6ys7PPejw7O5t9+/ZZVFVs83q93HHHHSxdupSZM2daXU7MefbZZ9m2bRubN2+2upSYdeTIEX7zm9+wcuVKvv/977N582a+/e1vExcXx80332x1eTHlzjvvxO12M3XqVOx2Ox6Ph5/+9KfceOONVpcWs8rKygC6/LkY+F4kDcswItF36623smvXLjZs2GB1KTGnpKSE22+/nbVr1xIfH291OTHL6/WycOFC7rnnHgDmzZvHrl27ePTRRxVGwuxPf/oTf/zjH3n66aeZMWMGRUVF3HHHHeTl5emzjlHDcpomKysLu91OeXn5WY+Xl5eTk5NjUVWx67bbbuNvf/sbb7/9Nvn5+VaXE3O2bt1KRUUF8+fPx+Fw4HA4eOedd3j44YdxOBx4PB6rS4wJubm5TJ8+/azHpk2bRnFxsUUVxa7/+q//4s477+SLX/wis2bN4qtf/Srf+c53WLNmjdWlxazAzz6rfi4OyzASFxfHggULWLduXfAxr9fLunXrWLJkiYWVxRbTNLntttt48cUXeeuttxg3bpzVJcWkK6+8kp07d1JUVBT8WrhwITfeeCNFRUXY7XarS4wJS5cuPW9p+oEDBxg7dqxFFcWuxsZGbLazfzzZ7Xa8Xq9FFcW+cePGkZOTc9bPRbfbzYcffhiVn4vDdppm5cqV3HzzzSxcuJBFixbx0EMP0dDQwIoVK6wuLWbceuutPP3007z88sukpKQE5x3T0tJISEiwuLrYkZKScl4fTlJSEiNGjFB/Thh95zvf4aKLLuKee+7hX/7lX9i0aROPPfYYjz32mNWlxZzrrruOn/70p4wZM4YZM2awfft2HnzwQb72ta9ZXdqQVl9fz6FDh4K/Pnr0KEVFRWRmZjJmzBjuuOMO/s//+T9MmjSJcePGcdddd5GXl8f1118f+eIivl5nEPvlL39pjhkzxoyLizMXLVpkfvDBB1aXFFOALr/+53/+x+rSYp6W9kbGK6+8Ys6cOdN0uVzm1KlTzccee8zqkmKS2+02b7/9dnPMmDFmfHy8OX78ePO///u/zZaWFqtLG9LefvvtLv9Ovvnmm03T9C3vveuuu8zs7GzT5XKZV155pbl///6o1GaYpra0ExEREesMy54RERERGTwURkRERMRSCiMiIiJiKYURERERsZTCiIiIiFhKYUREREQspTAiIiIillIYEREREUspjIiIiIilFEZERETEUgojIiIiYimFEREREbHU/w9sUbX4trA9GwAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"from matplotlib import pyplot as plt\n",
|
|
"\n",
|
|
"x = np.linspace(0, 2*2.0*np.pi, 1000)\n",
|
|
"y = np.sin(x)\n",
|
|
"\n",
|
|
"\n",
|
|
"grid_bin = np.fromfile(\"../out/grid.bin\", dtype=np.float64)\n",
|
|
"plt.plot(grid_bin, np.zeros(len(grid_bin)))\n",
|
|
"grid = np.loadtxt(\"../out/grid.dat\")\n",
|
|
"plt.plot(grid, np.zeros(len(grid)), linestyle='--')\n",
|
|
"knots = np.loadtxt(\"../out/knotpoints.dat\")\n",
|
|
"plt.plot(knots, np.zeros(len(knots)), marker='o')\n",
|
|
"bspline0 = np.loadtxt(\"../out/bspline0.dat\")\n",
|
|
"plt.plot(grid, bspline0)\n",
|
|
"bspline1 = np.loadtxt(\"../out/bspline1.dat\")\n",
|
|
"plt.plot(grid, bspline1)\n",
|
|
"bspline2 = np.loadtxt(\"../out/bspline2.dat\")\n",
|
|
"plt.plot(grid, bspline2)\n",
|
|
"bspline2 = np.loadtxt(\"../out/bspline3.dat\")\n",
|
|
"plt.plot(grid, bspline3)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8cda5f82-13ac-4b95-aed4-f999a8dbd185",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "ce5642b3-6387-45f7-aaaf-dfb9085b3d49",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c4866585-9cb8-4eb8-a8c6-0489f831c55d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "59ee4447-5513-48f4-88fc-a20b8430e15c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|