refactor before doing bvh triangles

This commit is contained in:
Anton Ljungdahl 2025-04-29 19:57:13 +02:00
parent 3e41274f45
commit 8025e73db4
10 changed files with 2728 additions and 589 deletions

View File

@ -11,9 +11,11 @@ set cuda_root=D:/lib/cudatoolkit/lib/x64
set CudaSources=../src/main.cu set CudaSources=../src/main.cu
set CudaRemoveWarnings=-diag-suppress 177
IF NOT EXIST .\build mkdir .\build IF NOT EXIST .\build mkdir .\build
pushd .\build pushd .\build
nvcc %CudaSources% -o program.exe nvcc %CudaSources% %CudaRemoveWarnings% -o program.exe
set LastError=%ERRORLEVEL% set LastError=%ERRORLEVEL%
popd popd

2249
ray_ws.sublime-workspace Normal file

File diff suppressed because it is too large Load Diff

3
run.bat Normal file
View File

@ -0,0 +1,3 @@
cd build
program.exe
cd ..

35
src/base_core.h Normal file
View File

@ -0,0 +1,35 @@
#pragma once
#include <stdio.h>
#include <stdint.h>
#include <float.h>
#include <math.h>
#include <curand_kernel.h>
//------------------------------------------------------------------------------------------
//~ base defines
#define host_global static
#define function static
//~ typedefs
typedef int32_t S32;
typedef uint32_t U32;
typedef uint64_t U64;
typedef float F32;
//~ utility defines
#define CUDA_CHECK(err) do { \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA ERROR: %s at %s:%d\n", \
cudaGetErrorString(err), __FILE__, __LINE__); \
exit(EXIT_FAILURE); \
} \
} while (0)
#define LOG printf
#define F32_MAX FLT_MAX
#define F32_MIN FLT_MIN

139
src/base_math.c Normal file
View File

@ -0,0 +1,139 @@
__host__ __device__ inline function Vec3F32
vec3F32(F32 x, F32 y, F32 z)
{
Vec3F32 out = {0};
out.x = x;
out.y = y;
out.z = z;
return out;
}
__host__ __device__ inline function Vec3F32
add_V3F32(Vec3F32 a, Vec3F32 b)
{
Vec3F32 out = {0};
out.x = a.x + b.x;
out.y = a.y + b.y;
out.z = a.z + b.z;
return out;
}
__host__ __device__ inline function Vec3F32
sub_V3F32(Vec3F32 a, Vec3F32 b)
{
Vec3F32 out = {0};
out.x = a.x-b.x;
out.y = a.y-b.y;
out.z = a.z-b.z;
return out;
}
__host__ __device__ inline function Vec3F32
scale_V3F32(F32 s, Vec3F32 v)
{
Vec3F32 out = {0};
out.x = s*v.x;
out.y = s*v.y;
out.z = s*v.z;
return out;
}
__host__ __device__ inline function F32
dot_V3F32(Vec3F32 a, Vec3F32 b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
__host__ __device__ inline function Vec3F32
ray_point_F32(F32 t, RayF32 ray)
{
Vec3F32 out = add_V3F32(ray.origin, scale_V3F32(t, ray.direction));
return out;
}
__host__ __device__ inline function F32
mag_V3F32(Vec3F32 a)
{
return dot_V3F32(a, a);
}
__host__ function F32
h_norm_V3F32(Vec3F32 a)
{
F32 mag = mag_V3F32(a);
return sqrtf(mag);
}
__device__ function F32
norm_V3F32(Vec3F32 a)
{
F32 mag = mag_V3F32(a);
return __fsqrt_rn(mag);
}
__host__ __device__ function Vec3F32
lerp_V3F32(F32 s, Vec3F32 a, Vec3F32 b)
{
Vec3F32 lerp_term1 = scale_V3F32(1.0f-s, a);
Vec3F32 lerp_term2 = scale_V3F32(s, b);
Vec3F32 lerp_result = add_V3F32(lerp_term1, lerp_term2);
return lerp_result;
}
__device__ function Vec3F32
rand_uniform_V3F32(curandState *local_rand_state)
{
Vec3F32 out = {0};
out.x = curand_uniform(local_rand_state);
out.y = curand_uniform(local_rand_state);
out.z = curand_uniform(local_rand_state);
return out;
}
__device__ function Vec3F32
rand_uniform_range_V3F32(RngF32 rng, curandState *local_rand_state)
{
Vec3F32 out = {0};
out.x = rng.min + (rng.max-rng.min) * curand_uniform(local_rand_state);
out.y = rng.min + (rng.max-rng.min) * curand_uniform(local_rand_state);
out.z = rng.min + (rng.max-rng.min) * curand_uniform(local_rand_state);
return out;
}
__host__ function F32
linear_to_gamma(F32 val)
{
// We assume that the input value is in linear space, and
// we transform it to approximate srgb space by taking the sqrt
F32 out = val;
if (val > 0.0f)
{
out = sqrtf(val);
}
return out;
}
__device__ function F32
clamp_F32(RngF32 rng, F32 val)
{
F32 out = fmaxf(rng.min, val);
out = fminf(val, rng.max);
return out;
}
__device__ function Vec3F32
clamp_V3F32(RngF32 rng, Vec3F32 v)
{
Vec3F32 out = {0};
out.x = clamp_F32(rng, v.x);
out.y = clamp_F32(rng, v.y);
out.z = clamp_F32(rng, v.z);
return out;
}

63
src/base_math.h Normal file
View File

@ -0,0 +1,63 @@
#pragma once
//------------------------------------------------------------------------------------------
//~ structs
typedef union Vec3F32 Vec3F32;
union Vec3F32
{
struct
{
F32 x;
F32 y;
F32 z;
};
struct
{
F32 r;
F32 g;
F32 b;
};
F32 v[3];
};
typedef struct RngF32 RngF32;
struct RngF32
{
F32 min;
F32 max;
};
typedef struct RayF32 RayF32;
struct RayF32
{
Vec3F32 origin;
Vec3F32 direction;
};
//------------------------------------------------------------------------------------------
//~ forward declarations
__host__ __device__ inline function Vec3F32 vec3F32(F32 x, F32 y, F32 z);
__host__ __device__ inline function Vec3F32 add_V3F32(Vec3F32 a, Vec3F32 b);
__host__ __device__ inline function Vec3F32 sub_V3F32(Vec3F32 a, Vec3F32 b);
__host__ __device__ inline function Vec3F32 scale_V3F32(F32 s, Vec3F32 v);
__host__ __device__ inline function Vec3F32 ray_point_F32(F32 t, RayF32 *ray);
__host__ __device__ inline function F32 mag_V3F32(Vec3F32 a);
__host__ __device__ inline function F32 dot_V3F32(Vec3F32 a, Vec3F32 b);
__device__ inline function F32 norm_V3F32(Vec3F32 a);
__host__ __device__ function Vec3F32 lerp_V3F32(F32 s, Vec3F32 a, Vec3F32 b);
__device__ function Vec3F32 rand_uniform_V3F32(curandState *local_rand_state);
__device__ function Vec3F32 rand_uniform_range_V3F32(RngF32 rng, curandState *local_rand_state);
__host__ function F32 linear_to_gamma(F32 val);
__host__ inline function F32 h_norm_V3F32(Vec3F32 a);
__device__ function F32 clamp_F32(RngF32 rng, F32 val);
__device__ function Vec3F32 clamp_V3F32(RngF32 rng, Vec3F32 v);

View File

@ -1,36 +1,6 @@
#include <stdio.h> #include "base_core.h"
#include <stdint.h> #include "base_math.h"
#include <float.h> #include "rayt_core.h"
#include <curand_kernel.h>
//------------------------------------------------------------------------------------------
//~ base defines
#define host_global static
#define function static
//~ typedefs
typedef int32_t S32;
typedef uint32_t U32;
typedef uint64_t U64;
typedef float F32;
//~ utility defines
#define CUDA_CHECK(err) do { \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA ERROR: %s at %s:%d\n", \
cudaGetErrorString(err), __FILE__, __LINE__); \
exit(EXIT_FAILURE); \
} \
} while (0)
#define LOG printf
#define F32_MAX FLT_MAX
#define F32_MIN FLT_MIN
//------------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------------
//~ Program parameter defines //~ Program parameter defines
@ -47,522 +17,16 @@ typedef float F32;
#define SAMPLES_PER_PIXEL 64 #define SAMPLES_PER_PIXEL 64
#define MAX_DIFFUSE_DEPTH 8 #define MAX_DIFFUSE_DEPTH 8
//------------------------------------------------------------------------------------------ #include "base_math.c"
//~ structs #include "rayt_core.c"
typedef union Vec3F32 Vec3F32;
union Vec3F32
{
struct
{
F32 x;
F32 y;
F32 z;
};
struct
{
F32 r;
F32 g;
F32 b;
};
F32 v[3];
};
typedef struct RngF32 RngF32;
struct RngF32
{
F32 min;
F32 max;
};
typedef struct RayF32 RayF32;
struct RayF32
{
Vec3F32 origin;
Vec3F32 direction;
};
typedef struct ViewportF32 ViewportF32;
struct ViewportF32
{
F32 width;
F32 height;
F32 aspect_ratio;
Vec3F32 u; // along horizontal edge, right from top left corner
Vec3F32 v; // along vertical edge, down from top left corner
Vec3F32 upper_left;
Vec3F32 pixel_origin;
Vec3F32 pixel_delta_u;
Vec3F32 pixel_delta_v;
};
typedef struct CameraF32 CameraF32;
struct CameraF32
{
Vec3F32 center;
Vec3F32 up;
F32 focal_length;
F32 pixel_sample_scale;
};
typedef struct ImageF32 ImageF32;
struct ImageF32
{
U32 width;
U32 height;
F32 aspect_ratio;
U32 total_num_pixels;
};
enum EntityKind
{
EntityKind_Nil,
EntityKind_Sphere,
Num_EntityKinds
};
typedef struct HitRecord HitRecord;
struct HitRecord
{
Vec3F32 point;
Vec3F32 normal;
F32 t; // Root parameter for hit sphere
F32 hit; // Hit true or false
F32 front_face;
};
typedef struct Entity Entity;
struct Entity
{
EntityKind kind;
Vec3F32 center;
F32 radius;
};
//------------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------------
//~ host globals //~ host globals
host_global Entity nil_entity = {EntityKind_Nil, {0.0f, 0.0f, 0.0f}, 0.0f}; host_global CameraF32 h_camera;
//~ device globals host_global ViewportF32 h_viewport;
host_global ImageF32 h_image;
__constant__ CameraF32 camera; __global__ void
__constant__ ViewportF32 viewport;
__constant__ ImageF32 image;
//------------------------------------------------------------------------------------------
//~ routines
__host__ __device__ function Vec3F32 vec3F32(F32 x, F32 y, F32 z)
{
Vec3F32 out = {0};
out.x = x;
out.y = y;
out.z = z;
return out;
}
__host__ __device__ function Vec3F32 add_V3F32(Vec3F32 a, Vec3F32 b)
{
Vec3F32 out = {0};
out.x = a.x + b.x;
out.y = a.y + b.y;
out.z = a.z + b.z;
return out;
}
__host__ __device__ function Vec3F32 sub_V3F32(Vec3F32 a, Vec3F32 b)
{
Vec3F32 out = {0};
out.x = a.x-b.x;
out.y = a.y-b.y;
out.z = a.z-b.z;
return out;
}
__host__ __device__ function Vec3F32 scale_V3F32(F32 s, Vec3F32 v)
{
Vec3F32 out = {0};
out.x = s*v.x;
out.y = s*v.y;
out.z = s*v.z;
return out;
}
__device__ function F32 dot_V3F32(Vec3F32 a, Vec3F32 b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
__device__ function Vec3F32 ray_point_F32(F32 t, RayF32 ray)
{
Vec3F32 out = add_V3F32(ray.origin, scale_V3F32(t, ray.direction));
return out;
}
__device__ function F32 mag_V3F32(Vec3F32 a)
{
return dot_V3F32(a, a);
}
__device__ function F32 norm_V3F32(Vec3F32 a)
{
F32 mag = mag_V3F32(a);
return __fsqrt_rn(mag);
}
__device__ function Vec3F32 lerp_V3F32(F32 s, Vec3F32 a, Vec3F32 b)
{
Vec3F32 lerp_term1 = scale_V3F32(1.0f-s, a);
Vec3F32 lerp_term2 = scale_V3F32(s, b);
Vec3F32 lerp_result = add_V3F32(lerp_term1, lerp_term2);
return lerp_result;
}
__device__ function F32 surrounds_RngF32(RngF32 rng, F32 val)
{
F32 out = (rng.min < val) && (val < rng.max);
return out;
}
//
//__device__ function F32 contains_RngF32(RngF32 rng, F32 val)
//{
// F32 out = (rng.min <= val) && (val <= rng.max);
// return out;
//}
//
//__device__ function F32 size_RngF32(RngF32 rng)
//{
// return rng.max-rng.min;
//}
//
__device__ function Vec3F32
rand_uniform_V3F32(curandState *local_rand_state)
{
Vec3F32 out = {0};
out.x = curand_uniform(local_rand_state);
out.y = curand_uniform(local_rand_state);
out.z = curand_uniform(local_rand_state);
return out;
}
__device__ function Vec3F32
rand_uniform_rng_V3F32(RngF32 rng, curandState *local_rand_state)
{
Vec3F32 out = {0};
out.x = rng.min + (rng.max-rng.min) * curand_uniform(local_rand_state);
out.y = rng.min + (rng.max-rng.min) * curand_uniform(local_rand_state);
out.z = rng.min + (rng.max-rng.min) * curand_uniform(local_rand_state);
return out;
}
__device__ function Vec3F32
rand_unit_vector_on_sphere_F32(curandState *local_rand_state)
{
Vec3F32 out = {0};
RngF32 range = {-1.0f, 1.0f}; // Cube bounding the unit sphere
F32 inner_bound = 1e-8f; // Don't want too small vectors
for(U32 i = 0; i < MAX_RANDOM_UNIT_VECTOR_ITERATIONS; i += 1)
{
out = rand_uniform_rng_V3F32(range, local_rand_state);
F32 normsqrd = dot_V3F32(out, out);
if(inner_bound < normsqrd && normsqrd <= 1.0f)
{
F32 norm = __fsqrt_rn(normsqrd);
out = scale_V3F32(1.0f/norm, out);
break;
}
}
return out;
}
__device__ function Vec3F32
rand_unit_vector_on_hemisphere_F32(curandState *local_rand_state, Vec3F32 normal)
{
Vec3F32 out = {0};
Vec3F32 vec_on_unit_sphere = rand_unit_vector_on_sphere_F32(local_rand_state);
if(dot_V3F32(vec_on_unit_sphere, normal) > 0.0f)
{
// same hemisphere
out = vec_on_unit_sphere;
}
else
{
out = scale_V3F32(-1.0f, vec_on_unit_sphere);
}
return out;
}
__host__ function void write_buffer_to_ppm(Vec3F32 *buffer,
U32 image_width,
U32 image_height)
{
const char *filename = "output.ppm";
FILE *file = fopen(filename, "w");
if(!file)
{
LOG("Error opening file %s \n", filename);
}
// Write PPM header. First it has "P3" by itself to indicate ASCII colors,
fprintf(file, "P3\n");
// The row below will say the dimensions of the image:
// (width, height) <-> (num columns, num rows)
fprintf(file, "%i %i\n", image_width, image_height);
// Then we have a value for the maximum pixel color
fprintf(file, "255\n");
// Then we have all the lines with pixel data,
// it will be three values for each column j on a row i,
// corresponding to a pixel with index (i,j).
for(U32 i = 0; i < image_height; i += 1)
{
for(U32 j = 0; j < image_width; j +=1)
{
// We represent RGB values by floats internally and scale to integer values
U32 idx = i * image_width + j;
F32 r = buffer[idx].r;
F32 g = buffer[idx].g;
F32 b = buffer[idx].b;
U32 ir = int(255.999f * r);
U32 ig = int(255.999f * g);
U32 ib = int(255.999f * b);
fprintf(file, "%i %i %i ", ir, ig, ib);
}
fprintf(file, "\n");
}
fclose(file);
}
__device__ function F32
clamp_F32(RngF32 rng, F32 val)
{
F32 out = fmaxf(rng.min, val);
out = fminf(val, rng.max);
return out;
}
__device__ function Vec3F32
clamp_V3F32(RngF32 rng, Vec3F32 v)
{
Vec3F32 out = {0};
out.x = clamp_F32(rng, v.x);
out.y = clamp_F32(rng, v.y);
out.z = clamp_F32(rng, v.z);
return out;
}
__device__ function HitRecord
hit_sphere(Vec3F32 center, F32 radius, RayF32 ray, RngF32 range)
{
HitRecord out = {0};
// We take the quadratic formula -b/2a +- sqrt(b*b-4ac) / 2a,
// and we calculate only the sqrt part. If there is a hit with the sphere we either
// have two solutions (positive sqrt), one solution (zero sqrt)
// or no solution (negative sqrt).
// If we have no solution we have no hit on
// the sphere centered at center, with the given radius.
// Note that we can simplify this, since we always get b = -2(D . (C-Q)), and if
// we say b = -2h in the quadradic formula, we get
// -(-2h)/2a +- sqrt((-2h)**2 - 4ac) / 2a which expands to
// 2h/2a +- 2sqrt(h*h - ac)/2a, simplifying to (h +- sqrt(h*h - ac))/a.
// So we use this simplification to optimise away some operations
// Compare lines with RTIOW
// (C-Q)
Vec3F32 oc = sub_V3F32(center, ray.origin);
// a = D.D
F32 a = dot_V3F32(ray.direction, ray.direction);
// h = D . (C-Q)
F32 h = dot_V3F32(ray.direction, oc);
// c = (C-Q) . (C-Q) - r*r
F32 c = dot_V3F32(oc, oc) - radius*radius;
F32 discriminant = h*h - a*c;
// We are actually solving for the parameter t in the expression of a point P(t) that
// intersects the sphere. This is the quadratic problem we get by solving for t in
// (C - P(t)) . (C - P(t)) = r*r, r being the radius and P(t) = tD+Q,
// where D is the direction of the ray and Q the origin of the ray.
F32 hit_true = 0.0f;
// Branching version
// TODO(anton): Maybe try to make a branchless version
F32 root = 0.0f;
if(discriminant < 0.0f)
{
hit_true = 0.0f;
}
else
{
// t = (h += sqrt(h*h-ac))/a, and here we take the smallest solution to get the point
// on the sphere closest to the ray origin.
F32 sqrtd = __fsqrt_rn(discriminant);
root = (h - sqrtd)/a;
if(!surrounds_RngF32(range, root))
{
root = (h + sqrtd)/a;
if(!surrounds_RngF32(range, root))
{
hit_true = 0.0f;
}
else
{
hit_true = 1.0f;
}
}
else
{
hit_true = 1.0f;
}
}
out.hit = hit_true;
out.t = root;
// t is the parameter of the (closest) sphere-ray intersection point P(t) = tD+Q,
// where Q is the ray origin and D the ray direction.
out.point = ray_point_F32(out.t, ray); // intersection point
Vec3F32 N = sub_V3F32(out.point, center);
N = scale_V3F32(1.0f/radius, N);
F32 front_face = dot_V3F32(ray.direction, N) < 0.0f;
out.normal = front_face ? N : scale_V3F32(-1.0f, N);
out.front_face = front_face;
return out;
}
__device__ function RayF32
ray_get_F32(F32 x, F32 y, Vec3F32 cam_center, curandState *local_rand_state)
{
RayF32 out = {0};
// We have unit vectors delta_u and delta_v in the horizontal and vertical viewport directions.
Vec3F32 px_u = scale_V3F32(x, viewport.pixel_delta_u);
Vec3F32 px_v = scale_V3F32(y, viewport.pixel_delta_v);
Vec3F32 pixel_center = add_V3F32(viewport.pixel_origin, add_V3F32(px_u, px_v));
// To get anti-aliasing we make a random offset from the pixel center
F32 rand_u = curand_uniform(local_rand_state) - 0.5f;
F32 rand_v = curand_uniform(local_rand_state) - 0.5f;
// the rand u and rand v are offsets from a pixel in the [-0.5, 0.5] square.
// We need to put that into the world space of our viewport
Vec3F32 offset_u = scale_V3F32(rand_u, viewport.pixel_delta_u);
Vec3F32 offset_v = scale_V3F32(rand_v, viewport.pixel_delta_v);
// Then we shift the pixel center with the offsets in both directions
Vec3F32 pixel_sample = add_V3F32(pixel_center, add_V3F32(offset_u, offset_v));
// With a randomised point around the pixel center we can define the ray direction
// as the vector from the camera center to the point on the viewport.
Vec3F32 ray_direction = sub_V3F32(pixel_sample, camera.center);
out.origin = camera.center;
out.direction = ray_direction;
return out;
}
// Trace a ray and get a pixel color sample
__device__ function Vec3F32
get_sample_color(RayF32 ray, Entity *entities, curandState *local_rand_state)
{
RayF32 current_ray = ray;
Vec3F32 out = {0};
F32 current_attenuation = 1.0f;
F32 attenuation_factor = 0.5f;
Vec3F32 sample_pixel_color = vec3F32(0.0f, 0.0f, 0.0f);
for(U32 bounce_idx = 0;
bounce_idx < MAX_DIFFUSE_DEPTH;
bounce_idx += 1)
{
RngF32 hit_range = {0.001f, F32_MAX};
HitRecord hit_rec = {0};
for(U32 entity_idx = 0; entity_idx < MAX_NUM_ENTITIES; entity_idx += 1)
{
Entity *entity = &entities[entity_idx];
switch(entity->kind)
{
case EntityKind_Nil:
{
// no op
} break;
case EntityKind_Sphere:
{
HitRecord temp_hit_rec = hit_sphere(entity->center, entity->radius,
current_ray, hit_range);
if(temp_hit_rec.hit)
{
hit_rec = temp_hit_rec;
hit_range.max = hit_rec.t;
}
} break;
} // end switch entity kind
}
if(hit_rec.hit)
{
// "Paint entity"
// For a diffuse color we actually just update the attenuation here and
// bounce rays around... Then when we are not hitting anything anymore we will sample
// the background gradient and use the computed attenuation. Since the rays are
// bouncing diffusely this will shade nicely.
Vec3F32 rand_dir = rand_unit_vector_on_hemisphere_F32(local_rand_state, hit_rec.normal);
current_attenuation = current_attenuation * attenuation_factor;
current_ray.origin = hit_rec.point;
current_ray.direction = rand_dir;
//sample_pixel_color = add_V3F32(hit_rec.normal, vec3F32(1.0f, 1.0f, 1.0f));
//sample_pixel_color = scale_V3F32(0.5f, sample_pixel_color);
// debug
//sample_pixel_color = vec3F32(1.0f, 0.0f, 0.0f);
}
else
{
// Paint background gradient
F32 norm = norm_V3F32(ray.direction);
Vec3F32 unit_dir = scale_V3F32(1.0f/norm, ray.direction);
Vec3F32 white = vec3F32(1.0f, 1.0f, 1.0f);
Vec3F32 light_blue = vec3F32(0.5f, 0.7f, 1.0f);
// Lerp between white and light blue depending on y position
F32 blend = 0.5f*(unit_dir.y + 1.0f);
sample_pixel_color = lerp_V3F32(blend, white, light_blue);
// Scale by the current attenuation for diffuse shading using background color
sample_pixel_color = scale_V3F32(current_attenuation, sample_pixel_color);
break;
}
}
out = sample_pixel_color;
return out;
}
__global__ void
cuda_main(Entity *entities, Vec3F32 *pixelbuffer, curandState *rand_state) cuda_main(Entity *entities, Vec3F32 *pixelbuffer, curandState *rand_state)
{ {
@ -582,44 +46,12 @@ cuda_main(Entity *entities, Vec3F32 *pixelbuffer, curandState *rand_state)
// we initialise the color for this pixel to black. // we initialise the color for this pixel to black.
// Loop over all pixel samples // Loop over all pixel samples
Vec3F32 pixel_color = vec3F32(0.0f, 0.0f, 0.0f); Vec3F32 pixel_color = vec3F32(0.0f, 0.0f, 0.0f);
for(U32 sample_idx = 0; sample_idx < SAMPLES_PER_PIXEL; sample_idx += 1)
{
// TODO(anton): Maybe we can randomise things directly here as the
// nvidia accelerated version, where we just put the x, y indices with a
// randomised shift and normalise to viewport space by dividing by max x, max y
RayF32 ray = ray_get_F32((F32)x, (F32)y, camera.center, &local_rand_state);
Vec3F32 sample_pixel_color = get_sample_color(ray, entities, &local_rand_state);
F32 debug_sample = curand_uniform(&rand_state[idx]);
Vec3F32 debug = vec3F32(debug_sample, debug_sample, debug_sample);
//pixel_color = add_V3F32(pixel_color, debug);
pixel_color = add_V3F32(pixel_color, sample_pixel_color);
}
pixel_color = scale_V3F32(1.0f/(F32)SAMPLES_PER_PIXEL, pixel_color);
RngF32 clamp_range = {0.0f, 1.0f};
//pixel_color = clamp_V3F32(clamp_range, pixel_color);
pixelbuffer[idx] = pixel_color; pixelbuffer[idx] = pixel_color;
} }
} }
__global__ void cuda_init_state(curandState *rand_state)
{
U32 x = threadIdx.x + blockIdx.x * blockDim.x;
U32 y = threadIdx.y + blockIdx.y * blockDim.y;
if(x < image.width && y < image.height)
{
U32 idx = y * image.width + x;
curand_init(CURAND_SEED, idx, 0, &rand_state[idx]);
}
}
//------------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------------
//~ Main //~ Main
int main() int main()
@ -630,7 +62,7 @@ int main()
// Define image, camera and viewport on the CPU // Define image, camera and viewport on the CPU
// and then copy to constant globals on device // and then copy to constant globals on device
// ------------- // -------------
ImageF32 h_image = {0}; h_image = {0};
h_image.width = IMAGE_WIDTH; h_image.width = IMAGE_WIDTH;
h_image.aspect_ratio = ASPECT_RATIO; h_image.aspect_ratio = ASPECT_RATIO;
U32 height = U32((F32)h_image.width/h_image.aspect_ratio) + 1; U32 height = U32((F32)h_image.width/h_image.aspect_ratio) + 1;
@ -642,7 +74,7 @@ int main()
h_image.width, h_image.height, h_image.aspect_ratio); h_image.width, h_image.height, h_image.aspect_ratio);
// ------------- // -------------
CameraF32 h_camera = {0}; h_camera = {0};
h_camera.focal_length = 1.0f; h_camera.focal_length = 1.0f;
F32 samples_per_pixel = (F32)SAMPLES_PER_PIXEL; F32 samples_per_pixel = (F32)SAMPLES_PER_PIXEL;
h_camera.pixel_sample_scale = 1.0f/samples_per_pixel; h_camera.pixel_sample_scale = 1.0f/samples_per_pixel;
@ -652,7 +84,7 @@ int main()
CUDA_CHECK(cuErr); CUDA_CHECK(cuErr);
// ------------- // -------------
ViewportF32 h_viewport = {0}; h_viewport = {0};
h_viewport.height = 2.0f; h_viewport.height = 2.0f;
h_viewport.width = h_viewport.height * ((F32)h_image.width/(F32)h_image.height); h_viewport.width = h_viewport.height * ((F32)h_image.width/(F32)h_image.height);
h_viewport.aspect_ratio = h_viewport.width/h_viewport.height; h_viewport.aspect_ratio = h_viewport.width/h_viewport.height;
@ -685,14 +117,13 @@ int main()
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
// Setup entities and copy to device // Setup entities and copy to device
U64 entity_list_size = sizeof(Entity)*MAX_NUM_ENTITIES; U64 entity_list_byte_size = sizeof(Entity)*MAX_NUM_ENTITIES;
Entity *h_entities = (Entity *)malloc(entity_list_size); Entity *h_entities = (Entity *)malloc(entity_list_byte_size);
memset(h_entities, 0, entity_list_byte_size);
for(U32 i = 0; i < MAX_NUM_ENTITIES; i += 1) for(U32 i = 0; i < MAX_NUM_ENTITIES; i += 1)
{ {
// Init all entities to nil // Init all entities to nil
//h_entities[i] = {0}; h_entities[i].kind = EntityKind_Nil;
//h_entities[i].kind = EntityKind_Nil;
h_entities[i] = nil_entity;
} }
// Manual spheres // Manual spheres
@ -708,9 +139,9 @@ int main()
// Copy to device // Copy to device
Entity *entities = 0; Entity *entities = 0;
cuErr = cudaMalloc(&entities, entity_list_size); cuErr = cudaMalloc(&entities, entity_list_byte_size);
CUDA_CHECK(cuErr); CUDA_CHECK(cuErr);
cuErr = cudaMemcpy(entities, h_entities, entity_list_size, cudaMemcpyHostToDevice); cuErr = cudaMemcpy(entities, h_entities, entity_list_byte_size, cudaMemcpyHostToDevice);
CUDA_CHECK(cuErr); CUDA_CHECK(cuErr);

150
src/rayt_core.c Normal file
View File

@ -0,0 +1,150 @@
//~ device globals
__constant__ CameraF32 camera;
__constant__ ViewportF32 viewport;
__constant__ ImageF32 image;
__host__ function void
write_buffer_to_ppm(Vec3F32 *buffer,
U32 image_width,
U32 image_height)
{
const char *filename = "output.ppm";
FILE *file = fopen(filename, "w");
if(!file)
{
LOG("Error opening file %s \n", filename);
}
// Write PPM header. First it has "P3" by itself to indicate ASCII colors,
fprintf(file, "P3\n");
// The row below will say the dimensions of the image:
// (width, height) <-> (num columns, num rows)
fprintf(file, "%i %i\n", image_width, image_height);
// Then we have a value for the maximum pixel color
fprintf(file, "255\n");
// Then we have all the lines with pixel data,
// it will be three values for each column j on a row i,
// corresponding to a pixel with index (i,j).
for(U32 i = 0; i < image_height; i += 1)
{
for(U32 j = 0; j < image_width; j +=1)
{
// We represent RGB values by floats internally and scale to integer values
U32 idx = i * image_width + j;
F32 r = buffer[idx].r;
F32 g = buffer[idx].g;
F32 b = buffer[idx].b;
r = linear_to_gamma(r);
g = linear_to_gamma(g);
b = linear_to_gamma(b);
U32 ir = int(255.999f * r);
U32 ig = int(255.999f * g);
U32 ib = int(255.999f * b);
fprintf(file, "%i %i %i ", ir, ig, ib);
}
fprintf(file, "\n");
}
fclose(file);
}
__device__ function RayF32
ray_get_F32(F32 x, F32 y, Vec3F32 cam_center, curandState *local_rand_state)
{
RayF32 out = {0};
// We have unit vectors delta_u and delta_v in the horizontal and vertical viewport directions.
Vec3F32 px_u = scale_V3F32(x, viewport.pixel_delta_u);
Vec3F32 px_v = scale_V3F32(y, viewport.pixel_delta_v);
Vec3F32 pixel_center = add_V3F32(viewport.pixel_origin, add_V3F32(px_u, px_v));
// To get anti-aliasing we make a random offset from the pixel center
F32 rand_u = curand_uniform(local_rand_state) - 0.5f;
F32 rand_v = curand_uniform(local_rand_state) - 0.5f;
// the rand u and rand v are offsets from a pixel in the [-0.5, 0.5] square.
// We need to put that into the world space of our viewport
Vec3F32 offset_u = scale_V3F32(rand_u, viewport.pixel_delta_u);
Vec3F32 offset_v = scale_V3F32(rand_v, viewport.pixel_delta_v);
// Then we shift the pixel center with the offsets in both directions
Vec3F32 pixel_sample = add_V3F32(pixel_center, add_V3F32(offset_u, offset_v));
// With a randomised point around the pixel center we can define the ray direction
// as the vector from the camera center to the point on the viewport.
Vec3F32 ray_direction = sub_V3F32(pixel_sample, camera.center);
out.origin = camera.center;
out.direction = ray_direction;
return out;
}
// Trace a ray and get a pixel color sample
__device__ function Vec3F32
get_sample_color(RayF32 ray, Entity *entities, curandState *local_rand_state)
{
RayF32 current_ray = ray;
Vec3F32 out = {0};
F32 current_attenuation = 1.0f;
F32 attenuation_factor = 0.5f;
Vec3F32 sample_pixel_color = vec3F32(0.0f, 0.0f, 0.0f);
for(U32 bounce_idx = 0;
bounce_idx < MAX_DIFFUSE_DEPTH;
bounce_idx += 1)
{
RngF32 hit_range = {0.001f, F32_MAX};
HitRecord hit_rec = {0};
if(hit_rec.hit)
{
}
else
{
// Paint background gradient
F32 norm = norm_V3F32(ray.direction);
Vec3F32 unit_dir = scale_V3F32(1.0f/norm, ray.direction);
Vec3F32 white = vec3F32(1.0f, 1.0f, 1.0f);
Vec3F32 light_blue = vec3F32(0.5f, 0.7f, 1.0f);
// Lerp between white and light blue depending on y position
F32 blend = 0.5f*(unit_dir.y + 1.0f);
sample_pixel_color = lerp_V3F32(blend, white, light_blue);
// Scale by the current attenuation for diffuse shading using background color
sample_pixel_color = scale_V3F32(current_attenuation, sample_pixel_color);
break;
}
}
out = sample_pixel_color;
return out;
}
__global__ void
cuda_init_state(curandState *rand_state)
{
U32 x = threadIdx.x + blockIdx.x * blockDim.x;
U32 y = threadIdx.y + blockIdx.y * blockDim.y;
if(x < image.width && y < image.height)
{
U32 idx = y * image.width + x;
curand_init(CURAND_SEED, idx, 0, &rand_state[idx]);
}
}

67
src/rayt_core.h Normal file
View File

@ -0,0 +1,67 @@
#pragma once
typedef struct ViewportF32 ViewportF32;
struct ViewportF32
{
F32 width;
F32 height;
F32 aspect_ratio;
Vec3F32 u; // along horizontal edge, right from top left corner
Vec3F32 v; // along vertical edge, down from top left corner
Vec3F32 upper_left;
Vec3F32 pixel_origin;
Vec3F32 pixel_delta_u;
Vec3F32 pixel_delta_v;
};
typedef struct CameraF32 CameraF32;
struct CameraF32
{
Vec3F32 center;
Vec3F32 up;
F32 focal_length;
F32 pixel_sample_scale;
};
typedef struct ImageF32 ImageF32;
struct ImageF32
{
U32 width;
U32 height;
F32 aspect_ratio;
U32 total_num_pixels;
};
enum EntityKind
{
EntityKind_Nil,
EntityKind_Sphere,
Num_EntityKinds
};
typedef struct HitRecord HitRecord;
struct HitRecord
{
Vec3F32 point;
Vec3F32 normal;
F32 t; // Root parameter for hit sphere
F32 hit; // Hit true or false
F32 front_face;
};
typedef struct Entity Entity;
struct Entity
{
EntityKind kind;
Vec3F32 center;
F32 radius;
};
__host__ function void write_buffer_to_ppm(Vec3F32 *buffer, U32 image_width, U32 image_height);
__device__ function RayF32 ray_get_F32(F32 x, F32 y, Vec3F32 cam_center, curandState *local_rand_state);
__global__ void cuda_init_state(curandState *rand_state);

Binary file not shown.