antialising working!

This commit is contained in:
Anton Ljungdahl 2025-04-25 22:15:17 +02:00
parent a615f8efe8
commit fe726e9f49
2 changed files with 159 additions and 98 deletions

View File

@ -31,18 +31,19 @@ typedef float F32;
#define F32_MAX FLT_MAX #define F32_MAX FLT_MAX
#define F32_MIN FLT_MIN #define F32_MIN FLT_MIN
//~ test defines
//------------------------------------------------------------------------------------------
//~ Program parameter defines
#define NUM_BLOCKS 1 #define NUM_BLOCKS 1
#define NUM_THREADS 32 #define NUM_THREADS 32
#define IMAGE_WIDTH 1920 #define IMAGE_WIDTH 1920
#define ASPECT_RATIO 1.7778f // 16/9 #define ASPECT_RATIO 1.7778f // 16/9
#define CURAND_SEED 1984 #define CURAND_SEED 1984
#define MAX_NUM_ENTITIES 64 #define MAX_NUM_ENTITIES 64
#define SAMPLES_PER_PIXEL 32
//------------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------------
//~ structs //~ structs
@ -101,6 +102,7 @@ struct CameraF32
Vec3F32 center; Vec3F32 center;
Vec3F32 up; Vec3F32 up;
F32 focal_length; F32 focal_length;
F32 pixel_sample_scale;
}; };
typedef struct ImageF32 ImageF32; typedef struct ImageF32 ImageF32;
@ -227,21 +229,22 @@ __device__ function F32 surrounds_RngF32(RngF32 rng, F32 val)
return out; return out;
} }
__device__ function F32 contains_RngF32(RngF32 rng, F32 val) //
{ //__device__ function F32 contains_RngF32(RngF32 rng, F32 val)
F32 out = (rng.min <= val) && (val <= rng.max); //{
return out; // F32 out = (rng.min <= val) && (val <= rng.max);
} // return out;
//}
__device__ function F32 size_RngF32(RngF32 rng) //
{ //__device__ function F32 size_RngF32(RngF32 rng)
return rng.max-rng.min; //{
} // return rng.max-rng.min;
//}
//
__host__ function void write_buffer_to_ppm(Vec3F32 *buffer, __host__ function void write_buffer_to_ppm(Vec3F32 *buffer,
U32 image_width, U32 image_width,
U32 image_height, U32 image_height)
U32 *idx_buffer)
{ {
const char *filename = "output.ppm"; const char *filename = "output.ppm";
@ -267,9 +270,7 @@ __host__ function void write_buffer_to_ppm(Vec3F32 *buffer,
{ {
// We represent RGB values by floats internally and scale to integer values // We represent RGB values by floats internally and scale to integer values
U32 idx = i * image_width + j; U32 idx = i * image_width + j;
if(idx_buffer[idx] != 0) {
//LOG("idx %i, idxbuffer[idx] = %i \n", idx, idx_buffer[idx]);
}
F32 r = buffer[idx].r; F32 r = buffer[idx].r;
F32 g = buffer[idx].g; F32 g = buffer[idx].g;
F32 b = buffer[idx].b; F32 b = buffer[idx].b;
@ -286,9 +287,26 @@ __host__ function void write_buffer_to_ppm(Vec3F32 *buffer,
fclose(file); fclose(file);
} }
__device__ function F32
clamp_F32(RngF32 rng, F32 val)
{
F32 out = fmaxf(rng.min, val);
out = fminf(val, rng.max);
return out;
}
__device__ function HitRecord hit_sphere(Vec3F32 center, F32 radius, __device__ function Vec3F32
RayF32 ray, RngF32 range) clamp_V3F32(RngF32 rng, Vec3F32 v)
{
Vec3F32 out = {0};
out.x = clamp_F32(rng, v.x);
out.y = clamp_F32(rng, v.y);
out.z = clamp_F32(rng, v.z);
return out;
}
__device__ function HitRecord
hit_sphere(Vec3F32 center, F32 radius, RayF32 ray, RngF32 range)
{ {
HitRecord out = {0}; HitRecord out = {0};
// We take the quadratic formula -b/2a +- sqrt(b*b-4ac) / 2a, // We take the quadratic formula -b/2a +- sqrt(b*b-4ac) / 2a,
@ -369,27 +387,41 @@ __device__ function HitRecord hit_sphere(Vec3F32 center, F32 radius,
return out; return out;
} }
__device__ function RayF32
ray_get_F32(F32 x, F32 y, Vec3F32 cam_center, curandState local_rand_state)
__global__ void cuda_main(Entity *entities, Vec3F32 *pixelbuffer, U32 *idxbuffer)
{ {
U32 x = blockIdx.x * blockDim.x + threadIdx.x; RayF32 out = {0};
U32 y = blockIdx.y * blockDim.y + threadIdx.y;
U32 idx = y * image.width + x;
if(x < image.width && y < image.height) // We have unit vectors delta_u and delta_v in the horizontal and vertical viewport directions.
{ Vec3F32 px_u = scale_V3F32(x, viewport.pixel_delta_u);
Vec3F32 px_u = scale_V3F32((F32)x, viewport.pixel_delta_u); Vec3F32 px_v = scale_V3F32(y, viewport.pixel_delta_v);
Vec3F32 px_v = scale_V3F32((F32)y, viewport.pixel_delta_v);
Vec3F32 pixel_center = add_V3F32(viewport.pixel_origin, add_V3F32(px_u, px_v)); Vec3F32 pixel_center = add_V3F32(viewport.pixel_origin, add_V3F32(px_u, px_v));
// TODO(anton): Maybe we dont need some ray structure here.. // To get anti-aliasing we make a random offset from the pixel center
Vec3F32 ray_direction = sub_V3F32(pixel_center, camera.center); F32 rand_u = curand_uniform(&local_rand_state) - 0.5f;
RayF32 ray = {0}; F32 rand_v = curand_uniform(&local_rand_state) - 0.5f;
ray.origin = camera.center; // the rand u and rand v are offsets from a pixel in the [-0.5, 0.5] square.
ray.direction = ray_direction; // We need to put that into the world space of our viewport
Vec3F32 offset_u = scale_V3F32(rand_u, viewport.pixel_delta_u);
Vec3F32 offset_v = scale_V3F32(rand_v, viewport.pixel_delta_v);
// Then we shift the pixel center with the offsets in both directions
Vec3F32 pixel_sample = add_V3F32(pixel_center, add_V3F32(offset_u, offset_v));
// With a randomised point around the pixel center we can define the ray direction
// as the vector from the camera center to the point on the viewport.
Vec3F32 ray_direction = sub_V3F32(pixel_sample, camera.center);
out.origin = camera.center;
out.direction = ray_direction;
return out;
}
// Trace a ray and get a pixel color sample
__device__ function Vec3F32
get_sample_color(RayF32 ray, Entity *entities)
{
Vec3F32 out = {0};
RngF32 hit_range = {F32_MIN, F32_MAX}; RngF32 hit_range = {F32_MIN, F32_MAX};
HitRecord hit_rec = {0}; HitRecord hit_rec = {0};
@ -418,12 +450,14 @@ __global__ void cuda_main(Entity *entities, Vec3F32 *pixelbuffer, U32 *idxbuffer
} }
Vec3F32 pixel_color = {0.0f, 0.0f, 0.0f}; Vec3F32 sample_pixel_color = vec3F32(0.0f, 0.0f, 0.0f);
if(hit_rec.hit) if(hit_rec.hit)
{ {
// Paint entity // Paint entity
pixel_color = add_V3F32(hit_rec.normal, vec3F32(1.0f, 1.0f, 1.0f)); sample_pixel_color = add_V3F32(hit_rec.normal, vec3F32(1.0f, 1.0f, 1.0f));
pixel_color = scale_V3F32(0.5f, pixel_color); sample_pixel_color = scale_V3F32(0.5f, sample_pixel_color);
// debug
//sample_pixel_color = vec3F32(1.0f, 0.0f, 0.0f);
} }
else else
{ {
@ -436,16 +470,47 @@ __global__ void cuda_main(Entity *entities, Vec3F32 *pixelbuffer, U32 *idxbuffer
// Lerp between white and light blue depending on y position // Lerp between white and light blue depending on y position
F32 blend = 0.5f*(unit_dir.y + 1.0f); F32 blend = 0.5f*(unit_dir.y + 1.0f);
pixel_color = lerp_V3F32(blend, white, light_blue); sample_pixel_color = lerp_V3F32(blend, white, light_blue);
} }
pixelbuffer[idx] = pixel_color; out = sample_pixel_color;
return out;
}
//pixelbuffer[idx].x = (F32)x/(F32)image.width; __global__ void
//pixelbuffer[idx].y = (F32)y/(F32)image.height; cuda_main(Entity *entities, Vec3F32 *pixelbuffer, curandState *rand_state)
//pixelbuffer[idx].z = 0.0f; {
idxbuffer[idx] = idx; U32 x = blockIdx.x * blockDim.x + threadIdx.x;
U32 y = blockIdx.y * blockDim.y + threadIdx.y;
U32 idx = y * image.width + x;
if(x < image.width && y < image.height)
{
// We are adding all samples and then dividing by num samples to get the mean, so
// we initialise the color for this pixel to black.
// Loop over all pixel samples
Vec3F32 pixel_color = vec3F32(0.0f, 0.0f, 0.0f);
for(U32 sample_idx = 0; sample_idx < SAMPLES_PER_PIXEL; sample_idx += 1)
{
// TODO(anton): Maybe we can randomise things directly here as the
// nvidia accelerated version, where we just put the x, y indices with a
// randomised shift and normalise to viewport space by dividing by max x, max y
RayF32 ray = ray_get_F32((F32)x, (F32)y, camera.center, rand_state[idx]);
Vec3F32 sample_pixel_color = get_sample_color(ray, entities);
F32 debug_sample = curand_uniform(&rand_state[idx]);
Vec3F32 debug = vec3F32(debug_sample, debug_sample, debug_sample);
//pixel_color = add_V3F32(pixel_color, debug);
pixel_color = add_V3F32(pixel_color, sample_pixel_color);
}
pixel_color = scale_V3F32(1.0f/(F32)SAMPLES_PER_PIXEL, pixel_color);
RngF32 clamp_range = {0.0f, 1.0f};
pixelbuffer[idx] = clamp_V3F32(clamp_range, pixel_color);
} }
} }
@ -488,6 +553,9 @@ int main()
// ------------- // -------------
CameraF32 h_camera = {0}; CameraF32 h_camera = {0};
h_camera.focal_length = 1.0f; h_camera.focal_length = 1.0f;
F32 samples_per_pixel = (F32)SAMPLES_PER_PIXEL;
h_camera.pixel_sample_scale = 1.0f/samples_per_pixel;
cuErr = cudaMemcpyToSymbol(camera, &h_camera, sizeof(CameraF32), 0, cuErr = cudaMemcpyToSymbol(camera, &h_camera, sizeof(CameraF32), 0,
cudaMemcpyHostToDevice); cudaMemcpyHostToDevice);
CUDA_CHECK(cuErr); CUDA_CHECK(cuErr);
@ -571,22 +639,16 @@ int main()
cuErr = cudaMalloc(&pixel_buffer, pixel_buffer_size); cuErr = cudaMalloc(&pixel_buffer, pixel_buffer_size);
CUDA_CHECK(cuErr); CUDA_CHECK(cuErr);
// This is just a debug buffer, TODO(anton): remove curandState *rand_state = 0;
U32 *idxbuffer = 0; cuErr = cudaMalloc(&rand_state, num_pixels*sizeof(curandState));
cuErr = cudaMalloc(&idxbuffer, sizeof(U32)*num_pixels);
CUDA_CHECK(cuErr); CUDA_CHECK(cuErr);
curandState *d_rand_state = 0;
cuErr = cudaMalloc(&d_rand_state, num_pixels*sizeof(curandState));
CUDA_CHECK(cuErr);
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
// Initialise CUDA state such as random number states per thread. // Initialise CUDA state such as random number states per thread.
// This is separate for performance measurements // This is separate for performance measurements
// ------------ // ------------
cuda_init_state<<<blocks_per_grid, threads_per_block>>>(d_rand_state); cuda_init_state<<<blocks_per_grid, threads_per_block>>>(rand_state);
cuErr = cudaGetLastError(); cuErr = cudaGetLastError();
CUDA_CHECK(cuErr); CUDA_CHECK(cuErr);
cuErr = cudaDeviceSynchronize(); cuErr = cudaDeviceSynchronize();
@ -602,7 +664,7 @@ int main()
LOG("threads per block: (%i, %i %i) \n", LOG("threads per block: (%i, %i %i) \n",
threads_per_block.x, threads_per_block.y, threads_per_block.z); threads_per_block.x, threads_per_block.y, threads_per_block.z);
cuda_main<<<blocks_per_grid, threads_per_block>>>(entities, pixel_buffer, idxbuffer); cuda_main<<<blocks_per_grid, threads_per_block>>>(entities, pixel_buffer, rand_state);
cuErr = cudaGetLastError(); cuErr = cudaGetLastError();
CUDA_CHECK(cuErr); CUDA_CHECK(cuErr);
cuErr = cudaDeviceSynchronize(); cuErr = cudaDeviceSynchronize();
@ -617,15 +679,14 @@ int main()
cudaMemcpyDeviceToHost); cudaMemcpyDeviceToHost);
CUDA_CHECK(cuErr); CUDA_CHECK(cuErr);
// TODO(anton): remove debug buffer write_buffer_to_ppm(h_pixel_buffer, h_image.width, h_image.height);
U32 *h_idxbuffer = (U32 *)malloc(num_pixels*sizeof(U32));
cuErr = cudaMemcpy(h_idxbuffer, idxbuffer, num_pixels*sizeof(U32),
cudaMemcpyDeviceToHost);
write_buffer_to_ppm(h_pixel_buffer, h_image.width, h_image.height, h_idxbuffer);
cuErr = cudaFree(pixel_buffer); cuErr = cudaFree(pixel_buffer);
CUDA_CHECK(cuErr); CUDA_CHECK(cuErr);
cuErr = cudaFree(entities);
CUDA_CHECK(cuErr);
cuErr = cudaFree(rand_state);
CUDA_CHECK(cuErr);
return 0; return 0;
} }

Binary file not shown.